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Abstract

N

-5Mbdern optimal control methods are applied to a lumped mass

model of a tetrahedron. The four unit masses of this model are
interconnected by isotropic massless rods which are capable of
. axial deformation only (no bending). NASTRAN is employed in

generating a normal modes approximation, while providing the mode
shapes and frequencies for the resultant twelve modes. System
control is achieved via collocated sensor/actuator pairs at three (‘
of the four masses. Pointing accuracy at the fourth mass is used
as a figure of merit in determining the effectiveness of the con-
troller. A prescribed line of sight response is established as a

goal for successful control.

_The controller is developed using linear optimal techniques
which produce feedback gains proportional to the state. The
state is represented as modal amplitudes and velocities as deter-
mined by the sensors. The four higher frequency modes are trun-

cated to signify a simplifying order reduction step. State esti~

mation is incorporated due to the non-availability of modal ampli-
tudes and velocities. The feedback gains are established via
steady state optimal regqulator theory. Control is applied with

point force actuators. System response is examined in light of
the effects of observation spillover and control spillover onto Zﬂ

»

a specified number of suppressed modes. A comparison is ob-
tained by complete elimination of the spillover effect. Using
singular value decomposition, the spillover is first eliminated
through judicious reorientation of one sensor/actpator pair. . An

attempt to control two modes and suppress six demonstrates the

vi




advantages of spillover elimination, but fails to satisfy the
specified response criteria. /. —

Sensors are added to the model at the fourth mass and ob-
servation spillover is again eliminated. Line of sight response

was improved over the case without sensor additions, but was 1

still inadequate. The truncated modes were added to the system 1
with little degradation, verifying the acceptability of this i

truncation.
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MODERN OPTIMAL CONTROL METHODS

APPLIED IN ACTIVE CONTROL OF A

TETRAHEDRON

Introduction

The potential for larger and more compleX space structures
has grown concurrent with the approach of an active, operable
space transportation program. Present system concepts involve
the deployment of earth resource satellites and micro-wave power
relay systems with dimensions extending to hundreds and eventually
thousands of meters in diameter. A key design criteria for these
immense, mechanically flexible systems is the requirement to de-
velop advanced methods for control. More precisely, a principle
issue in the control of a system with an infinite number of vibra-
tional modes is the generation of a method for stabilizing these
huge structures with dimensionally realistic controllers. This
requirement is basically a function of on-board computer, sensor,
and force actuator limitations, along with incumbent modelling
inaccuracies. Of the numerous methods now being examined as
potential solutions to this control problem, modern state space
control theory has received general acceptance as the most via-
ble technigue. Applying classical control methods to these large
structures is seen as computationally improbable; at the same
time, modern state space theory, incorporating a finite element

system representation, can be successfully applied to a very wide

1
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class of flexible structures. This theory is most commonly
applied using an optimal time-invariant linear regulator as a
means of actively controlling vibration.

Due to the inherent hardware limitations briefly highlighted,
active control must be restricted to a relatively small number
of critical modes. Therefore, in a necessary truncation step,
some higher frequency modes remain unmodelled. Natural damping
in the system is assumed to preclude the possiblity of instabil-
ity resulting from these modes. Of the remaining modes (still a
potentially large number) it is further desirable to treat only
a critical few (not necessarily those with the lowest frequency),
while suppressing the rest.

However, the sensor outputs are contaminated by the remaining
"suppressed" modes, and the eventual feedback control also excites
these modes. Balas (Ref 1) labels these effects "observation
spillover” and "control spillover" respectively. He shows that
either or both of these effects can lead to overall instabilities;
the suppressed modes must, as a result, be a design consideration.
Balas describes a technique with which to develop a feedback con-
troller using state variable methods. The key to this approach is
the use of narrow bandpass filters which effectively comb out
the suppressed mode frequencies to eliminate observation spillover.

Another method for developing an appropriate feedback con-
troller was first presented by Sesak (Ref 2), and later expanded
by Coradetti (Ref 3). This approach involves the use of a so-

called "singular perturbation" technique in analyzing and elim-

inating the spillover-generated instabilities. Coradetti concludes




that employing this "singular perturbation" method in a limiting
sense, with an infinite penalty applied against any spillover, is
equivalent to finding a transformation matrix. This transforma-
tion matrix, when applied to feedback gains, effectively elimi-
nates any spillover terms. It should be noted that, even if
spillover does not render the system unstable, applying the trans-
formation method may still improve performance. Additionally,
while no method for actually automating optimal sensor and actua-
tor placement is defined, some valuable insight into the nature
of this task is precipitated. This is accomplished utilizing
what have now become well known state space control techniques

in conjunction with singular value decomposition of the rectan-
gular matrices of modal amplitudes (Ref 4).

The principle function of this thesis is to provide appli-
cation of the Coradetti approach to a three dimensional, lumped
mass model of a tetrahedron. A line of sight at one of the masses
(simulating pointing accuracy) will be used as a figure of merit
with which to judge the general effectiveness of this method.

This thesis will serve as a direct extension of the work done by
Sanborn (Ref 5), in which the stability of a cantilever beam in
bending vibration was studied. Specifically, this thesis will
examine model response as affected by the number and orientation
of position sensors and force actuators. The elimination of
control spilliover and observation spillover will be obtained using
singular perturbation and singular value decomposition technigues.

A representation of a tetrahedron has been obtained via

the normal modes approximation package found in the NASTRAN finite

3
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element computer program. The natural frequencies and eigen-
values/eigenvectors associated with each mode were provided by a
study done by the Charles Stark Draper Laboratory. For appli-
cation of the control method, position sensors are used to eval-
uate modal amplitudes, while point force actuators accomplish
the state variable feedback control. Singular value decomposi-

tion of the matrices of modal amplitudes at sensor locations

2

and actuator locations is used to produce a transformation matrix

by which spillover terms are eliminated. A model with higher
order modes truncated (un-modelled) is used to design the control-
ler. The effectiveness of this controller against all modes is
examined. Finally, a study of improved performance with added

sensors is generated.
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System Model

General Configuration

Of the many design criteria which must be considered for
the large flexible spacecraft currently being advanced, pointing
accuracy looms as the most critical. As a function of system
size and operating frequency, pointing accuracies in the range
of one tenth the half-power signal beam width will be required.
The ability to meet these stringent requirements becomes a direct
function of the isotropic stiffness of the system. One of the
space erectable or assembly concepts that has the promise of
supplying this needed stiffness in larger systems is the geo-
detic truss (Ref 6). Based on current Space Shuttle cargo
capacities, whole units of up to 91.4 meters can be packaged for
deployment. For very large systems, these units are assembled
as an amalgamation of tetrahedrons-- the basic unit of geodetic
truss. By changing the size of the tetrahedrons, a large array
of varying stiffness antenna substructures can be developed.

For this reason, a tetrahedron is seen as an important model
against which to apply proposed control techniques.

The finite element, lumped mass model to be used herein
is depicted in Fig 1 and Fig 2. This model is seen to consist
of ten nodes. The twelve interconnecting truss members are
assumed to be massless and are capable of resisting or exerting
axial force only (no-bending). Masses are of one unit each,
and are located at grid points one through four. Each mass

is capable of perturbation with three degrees of freedom.
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Figure 1. Cross Sectional View of the System Model
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Figure 2. View of System Model Down Y and X axes
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The remaining grid points (five through ten) serve to esta-
blish a fixed line of sight for an initial set of six col-
located sensor/actuator pairs. Node coordinates for the model
are listed as Table I. For this analysis, position sensors
are employed, but velocity sensors are not. The effects of
this are detailed in the linear system model to be developed
in this section.

An eigenvalue analysis of this nominal model has been pro-
vided via the NASTRAN computer program. Key results of this
analysis are presented as Table II. The eigenvectors associated
with these eigenvalues can be found in Appendix A. Table III
provides the initial conditions required for a time history exam-
ination of system stability. This stability will be assessed
using, as a figure of merit, the pointing accuracy along the 2
axis at node 1. Since any perturbation directly along the Z axis
has no impact on pointing accuracy, the line of sight in the

X ard Y directions only will be examined.
Table I,

Node Coordinates

>
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Y
0.0 1
-2.887
-2.887
5.7735
-1.1547
-4.6188
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-1.1547
5.7735
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Table I1

Key Results of NASTRAN Eigenvalue Analysis

i Generalized Generalized
: Mode Mass Stiffness wy (¥ad)/sec Q(rad?)/sec?
; 1 1.0E+00 1.37E+00 1.17E+00 1.37E+4+00
‘ 2 1.0E+00 2.15E+00 1.47E+00 2.15E400
" 3 1.0E+00 8.79E+00 2.96E+00 8.79E+00
4 1.0E+00 1.26E+01 3.56E+00 1.26E+01
5 1.0E+00 1.48E+01 3.85E+00 1.48E+01
6 1.0E+00 2.65E+01 5.15E+00 2,.65E+01
7 1.0E+00 3.22E+01 5.67E+4+00 3.22E+01
8 1.0E+00 3.26E+01 5.71E+00 3.26E+01
9 1.0E+00 7.99E+01 8.93E+00 7.99E+01
10 1.0E+00 1.06E+02 1.03E+01 1.06E+02
11 1.0E+00 1.19E+02 1.09E+01 1.19E+02
12 1.0E+00Q 1.95E+02 1.40E+01 1.95E+02
Table III

Initial Conditions for Time History Response

Mode Displacement (n) Velocity (%)
1 -. 001 -.003
2 .006 .01
3 .001 .03
4 -.009 -.02
3 .008 .02
6 -.001 -.02
7 -.002 -.003
8 .002 .004
2 .0 .0

10 .0 .0
11 .0 .0
12 .0 .0




Equations Of Motion

Since there are no exact equations of motion for a con-
tinous model of a tetrahedron, we are restricted to the discre-
tized representation provided by the finite element routines.

The output function or motion of the model can be expressed as:

Y(xj,t) =

Nn~s

63 (%) (£) (1)

i=}1

i i it s

where the ¢i(xj) terms are the mode shapes, and the Ui(t) terms

are the mode amplitudes, with n being the number of modes ex-

hibited by the model. For an exact solution to a continuous
system, the number of lumped masses and the number of modes (n)
would have to reach infinity. Practically speaking, the total

system displacement Y(xj,t), can be reasonably represented by a

truncation of Eq (1) such that n is considerably less than infin-
ié ity. This truncation will, of course, lead to model reduction
errors; but, up to a certain point these errors are relatively
insignificant.
NASTRAN analyzes the model in Fig 1. and generates both
the normal mode shapes and the corresponding natural frequencies

(mn). Since this is a lumped mass model consisting of four masses, |

j with each mass having three degrees of freedom, there are a total “

; of twelve normal modes. i~

Linear System Model

As stated, the number of modes (n) for a complex model may *
be very large. The practical limitations for an on-board com- i

puter and the associated sensor and actuator hardware make it

10 1
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necessary to develop a controller that is concerned with a
minimum number of modes, while still satisfying what may be very
stringent requirements on the performance (here, line of sight
accuracy). As the control theory outlined in this paper is elab-
orated, a possible method for determining which modés require
control will be discussed. At this point, assuming this
determination is possible, the system output of Eq (1) can be
segregated into 3 partitions; the controlled, the suppressed,

and the unmodelled:

,B) (2)

Y(xj,t) = Yc(xj,t) + Ys(xj,t) + Yum(xj

Yum(Xj,t) is that portion of the output generated through
the highest frequency modes. These modes are unmodelled, with
the hope that the bandwidths of the sensors and actuators employ-
ed will be less that the natural frequencies of the modes. Fur-
thermore, since these modes have such high frequencies, they may
be quite difficult to excite. Hence, any controller designed
for this system can ignore these modes. These modes are sub-
sequently called the residual modes.

Ys(xj,t) is that portion of the output generated by modes
of less high frequency, which, none-the-less have a minimal
direct impact on system performance. Due to their indirect
and potentially destabilizing impact (spillover), they must
be included in the design process. These modes are subsequently
called the suppressed modes.

Yc(xj,t) is that portion ot the output which we must directly

control to insure satisfactory performance. These critical modes

11




will subsequently be called the controlled modes.

Equation (2) can now be written in segregated form as:

H~aQ

Yc(x.,t) =

J .

: 1¢i(xj)Ui(t) (3)

c+s _
YS(Xj,t) = i=(Z:+1¢i(xj)Ui(t) (4)
S _

Yum(xj,t) = i=c§s+1¢i(xj)ui(t) (5)
where ¢ is the number of controlled modes, s is the number of
suppressed modes, and n is the total number of modes in the
model. Again, for this system model, n is twelve. For the pur-
pose of future analysis, the case of truncating the highest fre-
quency modes will be simulated by suggesting that the last four
(highest natural frequency) modes generated by NASTRAN fall into
this category. The design process for the overall controller
will be based on knowledge of only the first eight modes. The
eventual controller will be applied to a system incorporating
all twelve modes in an attempt to verify the acceptability of
this truncation. The modelling can thus be seen as a process of
two truncations in the effort to reduce control hardware and -
software requirements. First, the model is truncated to a work-
able number of modes by designing a controller that is blind to
the higher frequency modes. Second, the model is limited to
controlling only the critical modes where the figure of merit
is concerned.

NASTRAN has taken the prescribed system with the masses

and gridpoints provided, and modelled the structure with a set

12




of second order differential equations. These are the basic

spring mass differential equations such that i + w;n = f,
The associated first order eigenproblem is solved (Ref 7) so
as to provide the decoupled normal modes. This allows assem- 1

bling a state space representation of the system:

k X(t) = AX(t) + Bu(t) (6)

where

1 X(n x 1) is the state vector
u(m x 1) is the control input vector

A(n x n) is the plant matrix
B(n x m) is the input matrix &
By letting the state X be the partitioned matrix of mode ampli- Q
tudes(ﬁi(t)) and their rates of change (ﬁi(t)) the state variables #j

become:

ﬁf(t)] T i=1,2,...,n (7)

X(t) = [ﬁi(t)

Further separating the states into ic’ formed by the
controlled amplitudes and rates; and is’ formed by the suppressed

amplitudes and rates renders:

=1,2,..,c (8)

>
=
]
Qe
—
ot
I
]
=
|

“c [3i(t)

Uj(t)

'-l.

>
=
]

ﬁj(t) T 5 = c+l,..ces (9)

Substituting these states into Eq (6), the system is now modelled ;

by:
Xc(t) = Acxc(t) + Bcu(t)
xs(t) = Asxs(t) + Bsu(t)
13




The system parameter matrices are defined as:

0 . I
A = .......E....... {(12)
c _ :
-Q T =28, w.
c : i
| 1
F -
0 . I
A = (13)
-Q =28, .
‘S : gij
FO“
B, =|.. (14)
B
L'~C
Mo
Bs = leee (15)
B
[ ~S ]

The Gi and Ej terms are the diagonal elements of square
matrices which represent the natural frequencies of the con-
trolled and suppressed modes respectively, while the gi and
gj terms represent the damping ratios for those modes i =1,2,..c
and j = c+1,c+2,...c+s. The ﬁc and ﬁs terms are diagonal matrices
of these same natural frequencies squared as determined by
NASTRAN. Therefore, as an example, if two modes for a given

system were to be controlled, one would have:

14

s
4
H
&
b
b3




P T

r n

0 0 1 0

0 0 0 1

A = (16)

¢ -w2 0 -26w O
1 1 1

0 -w? 0 -2¢ w
2 2 2

Furthermore, the B, and Bs matrices aethe control input
matrices, and are those matrices whose columns are the mode

shapes (¢i(x),¢j(x)) evaluated at each actuator location such

that:
r<b(x) ¢, (x,) ¢(X)-
1*"1 1'%27 ° ¢ "¥Y1'%a

_¢c(x1) ¢c(x2) . . '¢c(xa)_J

B 3
¢c+1(x1) ¢c+1(x2). . .¢c+1(xa) g

) (x,) ¢ (x,) ) x_) 1
_ c+? 1 c+2'72 c+? a (18) 33
~8 . :

(x,) ¢ (x

c+s

2). . .¢c+s(xa)—J i'

where a is the total number of actuators employed.

Additionally, state space methods render the sensor output

as:

Y(t) = ccic(t) + csis(t) (19)

0:, (20)

with

0
o)
i
L
&0

15




) 0 (21)

where Cc and Cs are matrices whose "rows" are the mode shapes of
the controlled and the suppressed modes respectively evaluated
at the prescribed sensor locations such that:
r

b0k y(x) .+ . . O (xp)]

¢1(x2) ¢2(x2) . . . ¢c(x2)

c : (22)
01(xg) 6,0x0) + . 8 (x)
. — — —
Posr(X1) Ooyplxy)e o e 0o, 1x))
c = o1 1X2) ¢c+2(x2)' © s Poeg (%)
<s : . (23)
PorrFp)  foya(Xg). - 0o, g(xy)

The null portion of the gc and gs matrices represent
the velocities at the prescribed sensor locations, which are
zero since only displacement sensors are being employed. Again,
b is the total number of sensors used. It should be clear that

if collocated sensors and actuators are used, with a = b, then

T _

?c - gc (24)
T _

gs - gs (25)

As these model elements are created, it becomes clear that
this methodology is independent of structural complexity, except
for the overall matrix dimensions. Therefore, the applicability

of the subsequent analysis can be seen to be far reaching.




As a starting point toward developing a state variable
feedback controller, Fig 3 below represents the uncontrolled

system that has been here-to-fore described.

cl

o |
O
e

—_— X
INTEG - ]
=1CJ

—{af—

Figure 3. Simple Open Loop Plant

In order to eventually form an active control, u(t), using
state variable (modern control) feedback techniques, complete
knowledge of the actual state at time t must be known. However,
the only measure of the state X is the measurement vector Y pro-
vided by the sensors. To take those observations and create the
corresponding state, it will be necessary to develop a state esti-
mator which will accept those sensor observations and estimate
X as X.

Modal Control

As Balas explains, the state estimator used in developing
active feedback control can either be a Kalman Filter when it
is found that the signal-to-noise ratios are relatively small,
or a Luenberger observer, or a least squares technique, should

the signal to noise ratio be high enough to treat the system

17



as deterministic. Regardless of which is used, the estimator

will have the form:

Xg(e) = AK + BEE) + K (T(6) - ¥(t)] (26)
and §N(0) = 0 (27)
Y(t) = CNXN (28)

where N is replaced in our system by either c or s.

Observation of Eq (26) shows that the estimator equation
is comprised of the internal model of the state as in Egs (10)
and (11), plus a correction term which is made up of the error
between the measured output (¥(t)) and the computed output
(¥(t)). Equation (27) establishes an initial condition for the

state out of convenience. The error in this state estimation

process is given as:
eN(t) = XN(t) - XN(t) (29)

The equations for this estimator error, formed by combining

Egqs (26), (27), and (28) with Egqs (10), (11), and (19) becomes:

EN(t) = (A - KNCN)eN(t) + KyCpXp (t) (30)

For the prescribed system, this becomes:
ec(t) = (Ac - chc)ec(t) + chsxs(t) (31)

Ignoring the suppressed modes, this finally becomes:

e (t) = (Ac - KcCc)ec(t) (32)

18
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The observer Qain matrix, K, must be formulated so as to in-
sure that the estimator error defined in Eg (32) decays expcn-
entially at a rate more rapid than the system dynamics. The
decay rate is determined by the eigenvalues of (AC-KCC). Since
the eigenvalues of a matrix are equal to the eigenvalues of

the transpose of that matrix, Eq (32) can be rewritten as

follows:
wit) = a Tw(t) - ¢ Tg(e) (33)
C C
- T—
g(t) = K'w(t) (34)

The observer gain matrix, K, can now be calculated via
steady state optimal regulator theory. This is equivalent to

minimizing the quadratic regulator performance index J, where:
oo—-r _— b & —_—
J = %fo(woobw + g Robg)dt (35)
The known optimal solution to this minimization problem is:
K® = =R, CcP (36)

where P is the solution to the steady state algebraic matrix

Ricatti Equation:

T -1 _
PA, + AP - PCR "CP+0Q =0 (37)

where Qob is an n x n positive semidefinite state
weighting matrix
Rob is an m X m positive definite control

weighting matrix

By treating only the controlled modes in the generation
19




of the optimal state feedback gain matrix, we have signifi-
cantly reduced the order of the controller. This was accom-
plished, as previously stated to avoid practical problems
encountered in deriving a global controller. The reduced or-
der controller will subsequently be designed to control a sub-
set of all of the system states, while simultaneously avoiding
any excitation of the remaining states. Coradetti clarifies
the advantages of this process when he points out that the
computational burden of solving the Ricatti Equation increases
roughly as the cube of the order of the equation. There may
simply not be sufficient on-board computer memory available.
Also, the state estimator process increases with system order a
at a greater than linear rate. Finally, with non-interacting
controller there will be greater fault tolerance to actuator
failures.

In precisely the same fashion, the control feedback gain
‘matrix, G, can be formulated. Now, again using steady state
optimal regulator theory, the performance index to be minimized

is:
J = %/°(X_TFX_ + EYRf)dr (38)
0 C (o]

where F is an n x n positive semidefinite state
weighting matrix
R is an m X m positive definite control
weighting matrix

The optimal solution to this minimization problem is

G= R B S (39)

s W S B
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where 3 is the solution to the matrix Ricatti Equation:

T -1 T _
SA, +A_S -~ SBRB,'S +F =0 (40)

Implementing the results of Egs (36) and (39) with the

system Egs (10) and (11), as well as Eq (32) renders:

ic(t) = (A + Bcc)ic(t) + BCGE(t) (41)

is(t) = Asis(t) + Bscic(t) * BSGE(t) (42)

By taking the step of defining a system state vector incor-

porating the controlled states, the suppressed states, and

CarreRA @y B

the estimator error, such that:

Z(t) = el (t)

|
Q
=
e

=T T
xS (t{] (43)

e e g

a closed loop system model, containing the effects of the j
suppressed and controlled modes, and utilizing state variable

feedback as the control mechanism can be presented as:

[’A +BG:.: BG . 0
C C - C -
Z(t)= 0 I A_-KC, : KCg Z(t) (44)
BG ! BG AS‘

- 8

Recalling that the observation and control feedback gain 3

matrices (K and G) were designed to operate on the controlled

modes, the terms KCS and BsG create potential problems. These
in effect, are known as observation spillover and control spill-

over, respectively. Although all of the diagonal matrices of

21




Eq (44) are designed to have purely negative real parts for
all eigenvalues, it is obvious that the KCs and BsG terms can

cause overall system instabilities.

Block Diagram Representation for the Linear Model

In a parallel section of his paper, Sanborn generates the
block diagrams representing this new system model in two seper-

ate forms. Since the equations now governing the model are:

i = AX + Bu State Equation (45)

Y = CX Output Equation (46)

u = Gic Control Equation (47)

%, = Ac;(c +BU + KT - ¥) Estimator Equation (48)

The system can be presented as Fig 4. This diagram can
be manipulated per Johnson (Ref 8) to generate a modified block
diagram form as shown in Fig 5.

From Fig 5 the closed loop transfer function for the con-

troller is seen to be:

£ _ - _ -1
Y(s) = K(SI Ac BCG + ch) G (49)

From this transfer function, we know that if any of the
eigenvalues of (Ac + BCG - KCC) are positive, then the controller
is unstable. Since the techniques for generating both the ob-
servation and control gain matrices were employed independently,
the possibility that an unstable controller is formed exists.

Although the controller, when coupled with the plant, would
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produce a stable system, the potentially disastrous effects of
an intermittent decoupling must be emphasized. An examination
of the eigenvalues of (Ac + BCG - KCC) will, therefore, be

included in the analysis.
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Transformation Matrix Control

It has been shown in what has preceded that, due to obser-
vation spillover and control spillover, the system represented
by Eq (44) could be made unstable. In an attempt to alleviate
this problem we will employ a control technique which attempts
to eliminate spillover. This suggests driving the off-diagonal
matrices of Eq (44) to zero, while retaining active feedback
control of the overall system. An examination of the system
equation leads one to realize that, if either BSG or KCs are
zero, the system eigenvalues revert to the eigenvalues falling
on the diagonal. The nature of these diagonal matrices is
such that negative eigenvalues (and, hence, system stability)
are guaranteed. Obviously, one solution to BSG = 0 is G = 0.
However, this solution also renders BCG = 0, and control is for-
gone. That being the case, the transformation method is dir-

ected at constraining the feedback gain matrices such that:

BG =0 (50)

KC, = 0 (51)
while, at the same time:

BCG # 0 (52)

KC, #0 (53)

To develop this method, we will first look at the condi-
tions required to satisfy Egqs (50) and (52), namely the elimina-

tion of control spillover. At the core of this method will be

25




an attempt to find some transformation matrix, T, such that

subsequent control vector, U(t), required for Eq (6) will be:

U(t) = Tz(t) (54)

where z(t) is now the new control input and with constraint that:

BT=20 (55)

while: BcT #0 (56)

One method with which to obtain this transformation matrix
employs a technique known as Singular Value Decomposition (Ref 9).

Using SVD allows reformulation of the s x m B_ matrix as:
o

B, = Wiv© (57)
where W is an s x s orthogonal matrix of left singular
vectors

V is an m x m orthogonal matrix of right singular
vectors

and

(58)

™
]
.
.
.
¢« o o o o
.
.
.

Such that S is a q X g diagonal matrix of the singular values of

Bs’ or: (continued)
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9]

Singular values are always greater than or equal to zero,

and the total number of non-zero singular values is equal to the

rank of the decomposed matrix. As long as Bs is full rank with

dimensions of s x m, then g is the minimum value of the pair

(s,m). By arbitrarily letting r be the difference between g and

m, or:

The W can be partitioned
W =

having:
W as an s X g
q
W_as an s xr
r

In a similar fashion, we

g and n such that:

We can now partition the

,

having:

q+r=s (59)

such that:

17) W (60)
[ g %]s X s

matrix

matrix

can choose p as the difference between

q+p=m (61)

right singular vector matrix, V, as:
N

\' (62)
%]m X m

Vq as an m x g matrix

Vp as an m X p matrix
27
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By defining V_ as our transformation matrix, T, we find
some highly desirable results with respect to Egs (55) and (56),

namely:

T
T=BV =WSV "V
BS s P 9 9 P (63)

However, since V is an orthogonal matrix:

T
v'v =20 6
q (64)

Hence:

BST =0 (65)

Coordinating this expression for the transformation matrix with
the model so far established, it should first be noted that the
dimensions of Bs are directly the result of both the number of
modes to be supressed (s) and the number of actuators employed
(m). If the rank of the matrix BS is equal to the number of
actuators available, then g = m. By Eq (61) it is seen that this
forces p to be zero. It follows that Vp =T = (0, and we are
restricted to the trivial solution. Recalling the previous com-
mittment for the transformation method, this would fail by
allowing BcT = 0. It is clear that for the transformation method
to be carried to an exact solution, special conditions in-
cluding g < m must be met. Restated, the rank of Bs must be

less than the number of actuators. It should, however; be

noted that if you are restricted to a fixed number of pre-
oriented actuators, performance is enhanced by using the sin-~

gular vector associated with the least singular values (even
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though BsT # 0). In any case, where q = m, an order reduction

scheme is required to get an exact non-trivial solution to

L}

BsT 0. As a verifying set of examples, let g be the rank of

By, and let that matrix have dimensions s x m with s = 4 and
m=3, 1If Bs is full rank, g = 3. Therefore by Eq (61), p = 0.
However, if we can reduce the rank of BS tog =2, thenp =1
and Vp is non-zero. As will be demonstrated, this rank defi-
ciency is obtained either through judicious orientation of the
actuators (driving a non-zero singular value to zero) or through
addition of actuators and increasing m. The minimum number of
actuators that can be used where the former method is employed
is two, since a matrix of rank 1 cannot be made rank deficient.

Regardless of how an appropriate non-zero T is formed, we

will how have the resultant solution vector in Eq (54), where:

z = -Gtxc (66)
and |

Rt = TRT {67)
such that R, is a p X p positive definite matrix, and:

Bt = BCT - (68)

with Ath completely controllable.
To generate the new control vector, Zz, the same approach
as followed in Section III is employed. The control gain matrix

is now defined by:

G, =R "B_P (69)




and T -1 T
PcAc + Ac Pc + PthRt Bt Pc + Qc =0 (70)

where:
Gt is a p x m reduced degree of freedom critical state
feedback gain matrix
Pc is a m x m positive definite solution to the reduced

order Ricatti Equation

The gain matrix is therefore finally transformed by:

Gc = TGt (71)

which will produce a new m dimensional control with zero control
spillover.

A parallel technique is employed to eliminate the KCs
observation spillover term. Here, the number of sensors must
exceed the number of suppressed modes, or Cs must be made rank
deficient through sensor re-orientation. The specific methodo-
logy for reducing the order of the optimal regulator will be
described as part of the computer model, and in the investigation

which follows.
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Computer Model

Appendix A represents a computer listing for one run of the
main program. This particular run applies the transformation
method to an eight mode nominal model such that the control spill-
over (BSG) is driven to zero. Although the program is seen to be
quite lengthy, the comment cards which have been included for
clarity suggest the overall straightforwardness of the approach.

As a first step, the parameter matrices (A, B, C) are built.
The A matrix portion of the program reads in the natural fre-
quencies from the NASTRAN data, and uses these frequencies and
a prescribed damping ratio (0.005) to £ill this parameter matrix
appropriately. The B and C matrices are formed as a matrix pro-
duct of mode shapes and actuator or sensor locations. That is,

B is formulated as:
B =4¢"D (72)

where
¢ is the matrix whose columns are the eigenvectors
for each mode supplied by NASTRAN (mode shapes)
D is a direction cosine matrix for the locations
and orientations of the prescribed actuators.
Since the sensors and actuators are collocated, it then becomes
clear that:

C=B =D% (73)

Next, by supplying as an input value the number of modes to be

controlled, the program takes the A, B, and C matrices and
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generates their controlled and suppressed counterparts (i.e. Ac'
AS,Bc «++). With these matrices formed, along with their trans-
poses, the steady state feedback gain matrices (K and G) are
established. Reviewing this process as described in Section III,
it is seen that one step involves solution of the steady state
matrix Ricatti Equation. This solution is obtained via highly
specialized computer subroutines created by Kleinman (Ref 9).
With these gain matrices, the total system equation seen as Eq
{44) is formed. An eigenvalue analysis using subroutine EIGRF
from the International Mathmatical and Statistical Library
(IMSL) is completed against the controller (A + BCG) the ob-
server (A - KCC), and the entire system. This allows for a
stability analysis based on these eigenvalues.

Next, a time history response (20 seconds) is performed on

the line of sight in both the x and the y directions at grid point

1. This is accomplished in two steps. First, the CC6600 sub-
program library of the Air Force Institute of Technology is
implemented such that program ODE (Ref 10) can be used to inte-
grate the state equation:

X = AX + Bu (74)
to establish x(t) for t = 0.0, 0.1, 0.2,...20.0. Then, using
the mode shapes and, primarily their x and y components at grid
point 1, the line of sight magnitudes are formulated such that:

n

X () = i£1¢1ixi(t) (75)
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and

n
Xz(t) = i£1q>2ixi(t) (76)

with

Xl(t) being the line of sight in the x direction

X2(t) being the line of sight in the y direction

This set of results provides a baseline for comparison of

future analyses. Once these plots are completed, a singular

value decomposition is performed on Bs as the first step in the !

transformation method. The actuator corresponding to grid

Lo s aiastne

point 7 is rotated incrementally until the least singular value
of Bs becomes nearly zero. In effect, this reduces the rank
of Bs' With this new orientation, a new control gain matrix

{(G) is formed using the methods described in Section III.

IELEIL

Also, new B and C matrices are created to account for the re-

oriented sensor/actuator pair. 1
With these new values, the program returns to the eigen-

values obtained previously. The fact that the system eigenvalues e

are those of the diagonal members is born out. New plots are

then generated so as to compare the time history responses with

and without control spillover. This same approach is followed :

ir driving the observation spillover (KCS) to zero. This set i

of runs demonstrates the improvement available without adding
hardware.

Finally, two sensors are added at grid point one to examine i
the effectiveness of adding some fairly simple hardware (as

opposed to adding actuators). These two sensors are given an
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orientation typical to those sensors already prescribed. This
run is repeated against a twelve mode model to verify the legit-
imacy of the first truncation of higher modes. It should be
noted that the selection of two additional sensors at grid point
one was arbitrary. Any number of additional sensors could be

added at any location for this final study.
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Investigation

Qutline

A systematic approach toward assessing the effectiveness
of the transformation method was initiated. As a first case,
the system eigenvalues and line of sight time history responses
were examined for models with and without control spillover
(BSG). The transformation technique was only applied to the
control gain (G). The sensor/actuator pairs remained collocated,
while one of these pairs was rotated to produce an additional
zero singular value to Bs' An angular orientation was obtained
which produced a rank reduction in the suppressed control matrix.
The weighting function of the controlled states, ic' was set at
the identity matrix. Upon successful completion of this first
case, the process was repeated with increasingly higher control
weighting. Then, this set of runs was compared to the case
of eliminating observation spillover (KCS), rather than control
spillover. The purpose of this alteration to the main program
is twofold. First, it would demonstrate that the total system
matrix (Eq (44)) is block diagonalized successfully by forcing
either of the spillover terms to zero. Second, it facilitates
the final area of investigation; namely the potential benefits
of sensor additions. The addition of sensors (rather than
actuators) within the prescribed model was chosen out of practi-
cality. From a "hardware" viewpoint, the addition of sensors is
seen to be considerably more realistic than the addition of

point force actuators.
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For all cases examined, the overall attempt is to reduce
the line of sight error in the x and y directions at grid point
one to less than 0.0004 radians and less than 0.00025 radians

respectively in 20 seconds.

Elimination of Control Spillover

In an attempt to further clarify the direction of this
analysis recall from Sections II and III that the control gain
matrices are determined using steady state optimal regqulator
theory, which involves minimization of related quadratic perfor-
mance indices. These performance indices for the model with and

without spillover are:

(]
|

= 5/7(XFX, + UTRu)at

[}
I

= %I:(ECTFX‘ + ERtﬁ)dt

respectively.

An inspection of these two indices demonstrates the role of
the control weightirg matrix, F, as an amplifier of the resul-
tant gains applied to the controlled states. All cases run
attempt to control the first two modes and suppress the remain-
ing six. An attempt to modify, and ultimately improve perform-
ance is tied to increasing the magnitude of this weighting
matrix. It is known from the previously developed theory that
increasing the magnitude of the control gain (here G) has the
coincident negative effect of increasing control spillover. It
is with this awareness that the first study is accomplished.

This study involves generating the system matrix and examining
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the eigenvalues and associated line of sight time history re-
sponse. Once these data are generated, the transformation
technique of Section III is applied to force BSG to zero.

Table 4 is a presentation of data pertinent to the first
case in which F is set at the identity matrix. Both sets of
system eigenvalues exhibit stability. Additionally, eigen-
values of the entire system are the same as the eigenvalues
of the matrices on the diagonal, verifying that control spill-
over has been eliminated. It should also be noted that the
transformation method has generated a controller (A + BCG - KC)
that is unstable, but which, none-the-less, produces a stable
system. Figures 6 through 9 represent the time history responses
for the x line of sight and y line of sight errors. Although a
precise bandwidth on the error is difficult to establish, it is
obvious that the prescribed limits specified in the outline
portion of this section have not been satisfied.

The next step then involves multiplying the F matrix by
scalar powers of ten (i.e. 1, 10, 100,...). Until F reaches
1000[I], there is no significant improvement in the line of
sight error for either the case with or without control spill-
over. However, at the F 1000[I], significant changes in the sys-
tem response become evident. Table 5 is a presentation of the
associated eigenvalues for this case. Clearly, the spillover
terms have now forced the system (without transformation of the
control gain) unstable. The eigenvalues after gain transforma-
tion, however, still exhibit stability. This demonstrates the
certain advantages of using this method. Figures 10 and 11
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depict line of sight errors without transformation and demon-
strates the unstable response indicated by the associated eigen-
values. The time histories of Figures 12 and 13 present an x
line of sight error for the system with BSG = 0 within an
approximate bandwidth of +.0013, and a y line of sight error

of +.0008. As the control gain weighting function is increasing
there is no significant improvement of response. The trend of
these data suggests that the criteria for pointing accuracy
cannot be met with the prescribed number of sensors and actua-
tors (6 each). It is clear, for the reasons highlighted, that

sensors will have to be added.
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Table IV

Elimination of Control Spillover; F = 1.0[1]

System Eigenvalues

i

Before After

Transformation (BSG#O) Transformation (BSG=0)

~.02822 ¢ 5.70935i -s -.02855 + 5.71073i

-.02838 ¢ 5.67583i -s -.02838 ¢ 5.67583i B
-.02553 + 5.14848i -s -.02575 & 5.14935i K
-.01918 + 3.84804i -s -.01924 + 3.84834i

-.01778 + 3.55770i -s -.01778 + 3.55770i t
-.01467 ¢ 2.96372i -s -.01482 + 2.96458i ']
-.08663 + 1.47902i e -.07712 + 1.46602i }
-.06679 + 1.18915i -C -.00751 ¢ 1.17064i $
-.06279 + 1.45703i -0 ~.08627 + 1.46583i 3
-.03768 + 1.16069i -0 -.04420 + 1.17052i

Eigenvalues of A_ + B G

Q
C

5 o gt e

-.07457 * 1.46607i -C- -.07712  1.46602i1
-.05199 * 1.17046i -C- -.00751 * 1.170641i
Eigenvalues of A= KC .
-.07457 t 1.46607i -0- -.08627 t 1.465831
-.05199 + 1.17046i -0- ~.04420 £ 1.17052i
Eigenvalues of A + B G - KC ;;
A o “ |
[ 3
-.00733 t 1.46222i .00194 + 1.46119i ]
-.00585 + 1.16818i .03072 ¢ 1.17082i
C = Controlled Mode Eigenvalues ¥
‘ S = Suppressed Mode Eigenvalues
‘ O = Observer Mode Eigenvalues
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Elimination of Control Spillover; F =

Table V

System Eigenvalues

;G#0)

Before
Transformation (B
.09178 + 5.73850
-.02838 + 5.675831
.03098 + 5.178921
-.00835 + 3.85687i
-.01764 + 3.55783i
.01328 + 2.98115i

-.300048 + 0i
-1.15711 + 0i
-1.66482 *+ .80887i1
-.07067 * 1.46398i
-.04480 + 1.16631i1

-2.89759 + 0i
-1.53062 + 0i
-1.5091- .74849i

=+

-.07458 ¢
-.05199

1.46608
1.17046

2 4

i -S-

Eigenvalues of

KC

i -0-
i -0-

Eigenvalues of A : 4B
-

Q

G

(o]

KC

-3.02017 + 0i
-1.46304 ¢ .64937
-1.27355 + 0i

C = Controlled Mo
S = Suppressed Mo
O = Observer Mode

i

de Eigenvalues
de Eigenvalues
Eigenvalues
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1000.0 [1]

After
Transformation (BSG=0)
-.02855 + 5,710731i
-.02838 + 5.675831i
-.02575 + 5.14935i
-.01924 + 3.848341i
-.01778 + 3.55770i
-.01482 + 2.964581i

-3.11793 + 0i
-1.46147 + 0i
-.02000 £ 1.17188i
-.08627 *+ 1.46583i
-.04420 £+ 1.170641

-3.11793 + 0i
-1.46147 + 0i
-.02000 *+ 1.17188i

-.08627 1.46583i
-.04420 + 1.17064i

i+

-3.23401 + 0i
-1.18781 + 0i
-.01849 * 1.17817i
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Elimination of Observation Spillover

The approach taken during this portion of the analysis is
directed by an awareness, a priori, that sensors will be added.
As a preliminary step, the procedure for applying the transforma-
tion method to the control gains is first reapplied to the obser-
vation gain (K). The same sensor and actuator pair at grid point
seven is again rotated until the smallest singular value of Cs is

driven to zero. Table VI presents the results of the eigenvalue
analysis which followed. Q replaces F as the observation weight-
ing matrix acting on the controlled states. Once again, the
system matrix is seen to be stabilized and diagonalized via the
transformation method. A more pertinent case, in light of a forth-
coming examination of sensor additions, is an application of the
transformation method to the system with the sensors in their
original orientation. Table VII, below, lists the singular val-
ues of Cs for the fixed six sensors. An examination of their
relative magnitudes indicates that, although the last singular
value is non-zero, some potential benefits may be gained by apply-
ing the transformation method with this singular value and its

associated right singular vector.

Table VII
Singular Values of Cs; Six Non-reoriented Sensors

Number Singular Value

.70706
.70423
.70363
.49803
.42875
.28536

AU a W N
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Table VI

Elimination of Observation Spillover; Q = 1000.0[;1

System Eigenvalues

Before

Transformation (KCS#O)

After

.12469 t 5.69223i -S- -.02855
-.02838 + 5,675831 -S- -.02838
.06669 + 5.157881 ~-S- -.02575
.00396 + 3.852661 ~S- -.01924
-.01746 * 3.55780i -S- -.01778
.03719 + 2.,97542i -S- -.01482
-.06713 * 1.45779i ~C- -.08626
-.03931 * 1.16093i -C- -.04420
-2.33756 *+ .32019i -0- -.52896
-1.72715 * 1.20427i -0- ~.05307
Eigenvalues of A + Bcg
-.07457 * 1.466071i -C- -.08626
-.05199 % 1.17046i1 -C- -.04420
Eigenvalues of A - KC
A L&)
-2.89750 + 0i -0- ~.52896
-1.50921 & .74854i ~-0- ~-.05307
-1.15308 + 0i -0-
Eigenvalues of Ac + BcG - KCc
1.45136 ¢ .959056i - 40005
2.13224 + 1.31631i -43833
C = Controlled Mode Eigenvalues
S = Suppressed Mode Eigenvalues
O = Observer Mode Eigenvalues
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H 4+ 0+ i+

I+

I+

+

1+

-+

Transformation (KCS=0)

5.71073i
5.67583i
5.14935i
3.84834i
3.55770i
2.96458i
1.46583i1
1.17052i
1.42215i
1.17791i

1.465831
1.17052i

1.422151

1.17791i

1.16987i
1.59171i




Table VIII

Reduction of Observation Spillover; Q = 1000.0[1] (Fixed Sensors)
System Eigenvalues
Before After
Transformation (KCS#O) Transformation (KCS#O )
.12469 + 5.692231 =S~ -.06666 * 5.71292i1
-.02838 + 5.675831i -5- -.02838 + 5.675831 '
.06669 + 5.15788i ~-S- .09387 + 5.210121
.00396 + 3.852661 -S- -.05836 + 3.81382i
-.01746 + 3.55780i1 -S- -.01331 + 3.560961 I
.03719 + 2.97542i -S- -.02278 + 2.961461i ]
-.06713 + 1.457791 -C- -.02024 t 1.47982i
-.03931 £ 1.160931i -C- -.09759 + 1.10147i ;
-2.33756 + .32091i -0- -.27202 % 1.34862i y
~1.72715 + 1.20427i1 -0- -.03520 *+ 1.20825i1i %
Eigenvalues of Ac + Bcg i
-.07457 + 1.46607i -C- -.07457 ¢+ 1.466071 g
-,05199 + 1.170461 -C~ -.05199 * 1.170461 f
Eigenvalues of A - KC .
C C .
-2.89750 + 0i -0- -.20967 + 1.17020i 3
-1.5308 + 0i -0- -.04992 + 1.46369i
-1.50921 t .74854i -0- ﬁ
]
|
Eigenvalues of A + B G - KC i
1.45136 t .95906i -.01187 + 1.48607i '
2.13224 ¢+ 1.31631 .13171 + 1.18510i

C = Controlled Mode Eigenvalues

n
]

Suppressed Mode Eigenvalues

o
L]

Observer Mode Eigenvalues
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The results of this analysis bear out our expectations.
First, some observability has been gained, and response is im-
proved. This is born out by examining Figs 14 through 17,
which are the line of sight response histories with and without
transformation. However, an examination of Table VIII shows that
the additional observability was not sufficient to generate a
completely stable system. The observation spillover has been

reduced, but not eliminated.

Sensor Additions

e

Until now, we have seen that the transformation method can
be successfully applied to the tetrahedron. Spillover can be
minimized or completely eliminated, depending on whether or not
sensor and actuator reorientations are permitted. In reality,
it is perhaps more likely that one would have less than complete
liberty to do this. Regardless, the specified line of sight
criteria has not been met. Hence, we are left with sensor addi-
tions as a last resort.

Two sensors were added to the system at grid point one.

This number and location are essentially arbitrary, but will
serve as a starting point for more exhaustive subsequent analy-
ses. Table IX, using the format applied throughout this report,
presents the results of this case. It is clear that sensor addi-
tions have allowed the same system matrix block diagonalization
as previous techniques. However, as has been the case previously,
Figs 18 through 21 demonstrate that the criteria for line of

sight response has not been met. The improvement to note is
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between time history response associated with Table VIII and

that of Table IX. Clearly, the addition of sensors has enhanced

the overall performance.
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Table IX

Elimination of Observation Spillover; Q = 1000.0[1] 8 Sensors

Before
Transformation (KCS#O)

System Eigenvalues

After
Transformation (KCS=O)

-.01473 * 5.713071 -5- -.02855 t 5.71071i
-.02838 + 5.675831 -S=- ~.02838 * 5.67583i

.02350 * 5.154841 S he ~.02575 * 5.14935i
-.05240 * 3,84096i -8~ ~-.01924 *+ 3.848341
~.01538 * 3.558041i -5~ -.01779 % 3.557701
~.02363 + 2.96131i -8~ -.01482 + 2.96458i
~.07371 + 1.464831 -C- -.07457 * 1.466071
~.05187 *+ 1,170311i -C- -.05199 * 1.170461
~15.6899 + 0i -0~ -.03632 * 1.19306i
~5.60922 + 0i -0- -.00733 * 1.466761
~1.20084 + 0i -0-
~1.02196 + 0i -0-

Eigenvalues of_éc +B .G
-.07457 t 1.466071 -C- -.07457 + 1.466071i
~.05199 + 1.170461 -C- -.05199 * 1.170461
Eigenvalues of Ac ~ KCC
~15.69921 + 0i -0~ -.03632 + 1.193061
-5.62028 + 0i -0~ -.00733 & 1.466761
-1.15106 + 0i -0~
-1.01144 + 0i -0~
Eigenvalues of Ac +BbG -~ KCC

15.33771 + 0i -.07457 t 1.46231i

4.12626 + 0i -.02153 * 1.19748i

2.48129 + 0i

1.25725 + 0i
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Conclusions

Two key conclusions can be drawn from the preceding analy-
ses. First, given a fixed number of sensors and actuators with
fixed orientation, the destabilizing effect of observation spill-
over and control spillover can be "minimized". When a reorienta-
tion of those sensors and actuators is permitted, these spillover
effects can be completely eliminated. Elimination of either con-
trol spillover or observation spillover guarantees system stabil-
ity, regardless of whether or not response criteria are satis-
fied. Second, if sensor reorientation is not allowed, complete
elimination of observation spillover can still be accomplished
through sensor additions.

The transformation method was found to be very effective in
eliminating control spillover and uncoupling system eigenvalues
when the number of actuators in the system is greater than the
number of modes to be suppressed. When the number of modes to
be suppressed is equal to the number of actuators, complete
elimination of control spillover can be accomplished through
an actuator reorientation which reduces the rank of the control
matrix, B. A parallel case can be made for the elimination of
observation spillover where the number of sensors is greater
than or equal to the number of suppressed modes. When reorien-
tation is not permitted, the degree of response improvement is
strictly a function of the relative magnitudes of the singular
values of the decomposed matrices. For the specific cases exam-

ined, the truncation of higher frequency modes was seen to be
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valid.

This truncation may not hold against other models.

64




Recommendations

The major theme of this analysis suggests that, due to the
complexity of larger and larger space systems, controllers will
have to be developed to operate on only those modes critical to
system response. This requirement is imposed due to limited
computer and hardware capabilities. Since line of sight
was established as the performance criteria in this study, the
modes were arranged in order of decreasing displacement at the
selected grid point. The decision to control two modes and to
suppress six was arbitrary. Since the selection of "critical
modes" is the starting point in developing an eventual control-
ler, the importance of this step cannot be overemphasized. No
automated technique for this process is currently available. An
exhaustive re-application of the computer technique found in
Appendix A may result in satisfaction of the prescribed time re-
sponse criteria. More importantly, valuable insight into this
task of critical mode selection might be obtained as fallout
from this study. 1In a parallel sense, the selection of two
sensors to be added for the final case examined was also ar-
bitrary. Once again, a follow up with varying numbers and loca-
tions of additional sensors would be necessary to develop the
optimal controller for this model. Finally, sensitivity to
modelling inaccuracies would be a natural topic for further
analysis. Parameter variations would have to be incorporated
into the NASTRAN analysis provided in order to simulate mode

shape and frequency errors for this sensitivity study.
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Appendix A

Eigenvector Results of NASTRAN Analysis
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Eigenvalue 1

Eigenvector 1

Eigenvalue 3

Eigenvector 3

Eigenvalue 5

Eigenvector 5

il

Real

Eigenvectors

1.37043E+00

C2.47073E-01]
4.27857E-02
1.45180E-06

-1.96263E-02
3.39753E-02

-7.21326E-02

-3.69602E-02
4.39747E-02

-1.96224E-02
5.29624E-02

| 4.39672E-02]

8.78894E+00

r6.36794E-02 |
3.67778E-02
4.00015E-01
1.98377E-01
1.14530E-01
2.00976E-01
1.54760E-01
6.80356E~02
9.76233E-02
1.36292E-01
1.00014E-01

9.78391E-02

1.48101E+01

[-8.78330E~02]
~5.07014E~02
-1.29877E-01
3.09503E-01
1.78636E-01
-3.51419E-01
2.86593E~01
1.22432E-01
1.13906E-02
2.49398E-01
1.86846E~01

1.14008E~02]

Eigenvalue 2

Eigenvector 2

Eigenvalue 4

Eigenvector 4

Eigenvalue 6

Eigenvector 6

]

I

2.15145E+00

[ 3.99896E-01]
2.30929E-01
-1.48908E-01
8.32862E-02
4.80849E-02
6.81283E-02
6.99996E-02
2.25294E-02
-4.72104E-02
5.45051E-02
4.93610E-02
-4.721538-02

1.26576E+00

[ 2.74559E-02 |
-4.75782E-02
-2.24915E-05
-1.71840E-01
2.97744E-01
-6.81682E-05
-2.51248E-01

3.43581R-01
-8.19014E-02
-1.71848E-01

3.89435E-01

Lmoe

L8'19218E—02

2.65165E+01

-
f1.35323E-05
1.21816E-11
3.40156E-11
-2.04139E-01
3.53548E-01
-6.05706E-06
-2.04139E-01
-3.53548E-01
1.08602E-04
4.08202E-01
6.80214E-10
| 5.06531E-10




Eigenvalue 7 =

Eigenvector 7 =

"

Eigenvalue 9

]

Eigenvector 9

Eigenvalue 11 =

Eigenvector 1l1=

Eigenvector = ix1,y1.z1, ..

3.22159E+01

£2.66140E~02"
4.60655E~02
3.30215E~05
3.37411E-02
-5.84417E~02
3.23144E-05
2.73330E-02
-5.48104E~02
-4.91269E-01
3.38171E~02
-5.10814E-02
| 4.90852E-01]

7.99170E+01

[ 9.90668E-02
5.72029g-02
1.72892E-01
1.07566E-01
6.21328E~02

~4.95312E-01

-1.67880E-01

-2.19818E~-01

-1.11010E-02

-2.74347E-01

-3.55381E-02

[~1.10861E-02 |
1.19320E+02

- "
6.36959E-02
3.67781E-02
9.58836E-02
-2.40062E-01
-1.38592E-01
~2.60496E-01
~8.60592E-02
3.94412E-01
6.96952E~03
2.98410E~01
~2.71939E~01

| 6.97073E-03]

-.géT
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Eigenvalue 8 =

Eigenvector 8 =

Eigenvalue 10 =

Eigenvector 10=

Eigenvalue 12 =

Eigenvector 12=r 3.20580E-02)]

3.26133E+01

[-2.99367E-02
-1.73093E-02
8.78423E-02
4.07052E-02
2.35996E-02
3.55373E-02
2.74211E-02
2.79794E~02
~4.87453E-01
3.79914E~02
9.80954E~03
-4.87867E~01,

1.06164E+02

[-3.38986E-03
5.84999E-03
-1.60534E-05
-2.28617E-01
3.95968E-01
4.96376E-05
3.78349E-01
4.55436E-02
-1.47053E-02
-2.28600E-01
-3.04859E-01
L1.47172E—0%

1.95068E+02

1.85103E-02
6.43806E~02
-4.02579E~01
-2.32435E~-01
-1.30450E-01
3.20382E-01
~1.58741E-01
-9.27787E-03
2.27168E-02
3.56828E-01

| -9.28169E-03)]
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1

P82

25

3

bi

45

6.

PROGAM TETRA

T477

PROGRAM TE
DIMENSION
DIMENSION
DIMENSTION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
OIMENSION
DIMENSION
DTMENSION
DIMENSION
JIMENSION
ODIMINSION
DTMENSTION
DTMENSION
DIMENSION
NIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
NIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSION
DIMENSICN
DIMENSION
NIMENSION
DIMENSION
DIMENSION
OIMZINSION
DIMENSION
OIMENSION
DIMENSION
NIMENSION
COMPLEX W(
COMPL EX Wi
INTEGER FF
INTEGER N5
INTEGER K2
INTZG ER NB
INTEGER F5
INTEGEF IF
INTEG ER NY
INTEGER IN

& 0PT=1 FTN 4. 8+5.i8

TRA(INPUT=/0806,0UT2UT=/132,TAFPES, TAPES,TAPET)
Y(20),YP(20)y WORK(S2() 4 INORK(5)

CCNE(8,416) yCSP31(816) yCINT(1648),4,CT(1Hy1)
T1(196) yTT1(6,1),vV2(156,1),2TT(1,15)

VV2(16916) yS2(10y10)yU_X2(164915) ;UKL1(1,10)
0K2(1916) ,0KT (16415)

XX1€203) ¢XX2(203) 9 XX3L203) 4 XXG(267%)yXXE(20 ) ,XX5(203)
XX7(203) 9 XXBL233)y TM(223) X1 (2333,yX%X2(203)
2820y 20)

T2€298) ,TT2(B42)93T2(1552) yRTZ2(298),RT2(2y2)
V3(Lg2) yCTT2(2416) 3 VV3(4y9%) 3S3(Lby16),ULXI(16,15)
RTII(252)30K3(2515) y0KLi(2,16),2KT2(8,4h)

BO(1E y15) ,SV(8) 4W. (16)

R1(B99) yRRR1(8,8) 3RR1{8,y5)

PH1(12,16) yPHIT(15,12)40012,6),21(8,12)
PHITO(8912) 9sPHIG(12,58) yB(8,06),BrG(8y4)yCR (8,8)
KCR(15,8)

CSPL(12,8)

ATOTU(16,16) yBTOT(15,0),2T0T (8,1%)

ACON(16916) )ASUP(16515) 3 JCUNC(L5,L) yBSUF (16 46)
CSP9(16,8)

CY(16916),ACNE {(164916)

WK(32) yCCT (16,16),CN(15,16)

WK1(32) yHK2(32) ,WK3(32)

ACN1(16416) yUC(16916)

CCON(8,16) yCSUP(8y16)

CCN2(8,16) ,CCN1(15,8),82N1(16,5)
ACN2(16916) yCX (165 16) yULX(L1Ey15)

BCN2(6916) yCSP1(8516) 9B321(1645)
COM3(16416)3C(15,16)

R(GsB) 9 N(16916) yRY(69y15) yAZONT(1€,516) y CCONT(16,3)
RX(B8916) 9P (1b4916) yOKTRN(3 316 5IK(1Ey8) 4yRR(6y6)
ATT(1916)9UL(16915)43CC(1291E)y0SPILL(1i6416)
CSP1LL(1by:.6),FI(L Ey1H)
COM1(16416/,COM2(16915)y3(16915) 9GO(E,16)
CO(16,16),COC(16,10)

SS(16916) yRRR{696) yRU(15458) 3RV (LL,y6)
72(16916)9S0(16915) 4BIONT (5,15)
PHIT1(16,12),8SP3(16,5) 93SPiu(15,€) 4PHIT2(16412)
T(O91) yTT(1,56) 4BT(16,1) yT1(1,5)

RT(191) 9V1(16,41)3VV(15985),S1(1E,y186)
ULX1(16,106) ,QQ(15,16) 9RTI(1,1),601(1,415),602(L,15)
2€)970(20Gy20) gWH(B) ,200(8,3)
(6),W2(8)yNI(B8) 78 (8y8)972(B986)4973(548)
F,Fi,FZ,F},F“,GGG,61,62,33,G“

s N6 9 N7

» KK

o N7

LAGyNEON,yJJ

1y

INTEGER IZyNNyIJOR

INTEGER Ly
INTEGER I,

MCy,NO,IA,IB,1IC
JINgMyF 4Gy FFy GG

INTEG ER NDIM,NDIM1,KINy KQUTy KPUNC 4

REAL TI,TO

UTyRELERRyABSERR
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70

75

ac

85

9C

95

8 196

105

11

PROSAM TETRA Th/Th 0PT=1

2O OQ

19
21

39

35

REAL €1,Q2903,04,05
REAL N6

RTAL TOL

REAL CAMF

REAL F8

COMMON Z3(2L,20)
COMMON/MAINI/NDIM,NDIML, COML
COMMON/ZINOQUT/ZKOUT , KIN,KPUNCH
COMMON/MAIN2/COM2
COMMON/MAINI/COM3
EXTERNAL X0OT

FEAD* 4N5

NDIM= 16

NDIML =17

TOL=, 904

KIN=Z

KQoUT=6

KPUNC H=7

I8R=1

DAMP= 4005

NY=0

N7=)

KK=0

M=8-NS

F5=2% N5

5=2*M

FF=NS +1

6GG6=M+ 1

Fi=F5 ¢4

F2=2* F5

Flz=F2 +1

Fa=F2+¢6

IF(KK GT«2)GO YO 37
READ* yN6

RZAD*® 4N7

CREATE A MATRIX

00 20 I=1,1¢

DN 13 J=1,16
“TO'(I,J)=JOU
CONTINUE

CONTI MNE

DO 3i I=1,8
J=1e8
ATOT(I,J)=8.0
CONTINUE

On 35 I=3,16
J=zI=8

READ® ,ATOT(I,HJ)
CONTI NUE

00 36 I=9,1€
READ® ,ATOT(1,1I)
ATOT(I9I)=2=DAMP¥2,%ATOT(I,I)
CONTI NUE

72

FTN 4¢8¢518




PROGRAM TETRA TL/74 0PT =1 FTN 4o.8+518
37 PAINT #,%
PRINT #,* =
PRINT #, %
PRINT *,“THIS RUN REPRESENTS AN ANA.YSIS SOR AN SIGHT 4ODE™ C

PRINT *,*APPFOXIMATION TO THZ SYSTE4,WITH ",N&,"™ MONES™
PRINT ¥, "CONTROLLEC AND ",M,* MODES SUPPRESSED"
PRINT #,* =

IF(NZ,GT.0)GO TO 169

PRINT ®4* ™

CREATE B MATRILX

U EYEY RS NORY )

2 DO 73 I=1,8
no 50 J4=1,6
3T0T(I,d) =0
39 CONTI NUE
7y CONTINUE -
No 72 I=1,16
DN 71 J=1,16
C(I,J)'—'OQU s
IF(T. EQ.J)C(I,J)=103 (
71 CONTI NUE
72 CONTI NE
DO 74 I=1,12
D0 73 JU=i,t ﬁ
N(I,J)=0e0 e
73 CONTI NUE ﬁ
41 CONTT NUE :
DN 76 I=h,b6
nn 75 J=1,2
READ¥ ,0(1,4) j
75 CONTI NUE !
N4-) SONTINUE
09 78 I=7,9 ]
DO 77 J=3,4
READ® 4,D(1I,J))
- 77 CONTI NUE
78 CONTINJUE
00 A0 TI=10,12
D0 79 J=£,6
RZAD* ,D(I,J)
79 CONTI MUE g
30 CONTTNUE y
00 82 I=1,12 ~
D) 831 J=1,8
PHI(I yJ)=0e0
31 CONTI NUE
52 CONTINUE
DO 84 J=9,1¢€
N0 83 I=1,12
READ® ,PHI(1,J)
83 CONTINUE i
0 CONTINUE a
ND 86 I=1,16 ,%
|
|
1

30 85 J=1,12




17%

18&

185

19¢

195

206

205

218

215

PROUGRAM TTTRA

85
36
37

LIV L)

121

i1
111
118

145
L4F

17

1+ 8

113

114
11"

116
11?7

Ts7u oPT=1

PHIT(IyJ)=PHI(J,I)

CONTINUE

CONTI NUE

Li=1F

MO=12

ND=56

IA=15

I3=12

IC=15

CALL VMULFF(PHIT, yDyL14MOsNOyTIA,I3,3TIT»1%,1ER)

CREATE C MATRIX

IF(NY «GT.4)GO TO 58
IF (NG «GT«b6)GO TO 113
ND 111 I=1,6

D7 116 J=1,12

DL(Iy J)=D(J,I)
CONTTINUE

CONTI NUE

L1=Nb

MO=12

NO=16

IA=3

I9=12

IC=9%

CALL VMULFFr (D1yPHI,ZL1,M40,N0O,IA,iByCTOT,,12,1IER)
NN 146 I=14 NS

DO 14856 J=1,8
STOT(IZN=CTOT(I,3+J)
CONTI NUE

CONTI NUE

DO th8 1=1,N5

DO 147 J=9,16
CTOT(I’J)=EQG
CONTINUE

CONTI NUE

60 TO 15t

DO 118 I=1,2

Nnn 114 J=1,12
D1(IyJd)=vel

CONTI NE

CONTINUE

ND1(1, 1)=,34355233306
D1(1,2)==,6122837618
D1L(L,y3)=,7L710€7812
N1(2,1)=-,3%35533936
N1(2,2)=,6122637618
01(2, 3)=47u74LET812
DY 117 1I=3,8

00 116 J=1,12

D1(1, J)=2D(J,y1-2)
CONTINUE

CONTINUE

L1=N& 74
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PROGIAM TETRA THITh 0PT=1 FTN we 64518 ‘

M0=12 i
23 NO=16
1 Ia=%
13=12
IC=8 !
CALL VMULFF(D1,PHI,L1,MO,MOyIA,1B,3TOT,12,1ER) f
230 no 54 I=1,8 :
DO 53 J=1,38
. CTOT(I 4NN =CTOT(I,yJe3) .
53 CONTINUE o
34 CONTINUE
00 56 I=1,8
D 85 J=Y,1t
CTOT(I,J0)=0.C

35 CONTINUE

36 SONTT NUE

159  IF(N746T«0)GO TO 136

5

3 SREATE A CONTROLLED AND A SUPPRES3ZD
{63 D00 180 I=1,N5

N0 179 J=1,N5
ACON(IZd)=ATO0T(I,I)
179 CNNTI NJUE
189 CONTTINUE
pn 260 I=41.N&
DN 190 J=FF,FE
ACON( 1,0 =ATOT (I Med)
190 CONTI NUE
20n CONTI NUE
DN 220 I=FF4yFE
D0 210 Js1i,4NS
ACON LI ) =AT0T (I +MyJ)
210 CONTINUE
22n CONTT NUE
D0 24Q I=FF,4F5
D0 232 J=FFyF5
ACON(I,J)=ATOT(I+MyJ+M)
230 CONTINUE
240 CONTINUE
S5h DO 260 I=i,M
nn 250 J=i,M
ASUP(TI,J)=ATOT(I¢Nvy JEND)
230 CONTI NUE
2619 CONTINUE
nn 289 I=i,M
nn 270 J=G66,46
ASUP(I4J)=ATOT (I +Nby J¢2*N5)
27" COANTINJE
28 CONTINUE
NO 3N 1=GG,y6
0N 298 JsiyM
ASUP(TI,J)=ATOT(2*N5+1,Nb+))
293¢ CONTINUE
330 CONTI NUE 75
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PROGRIAM TE RA T4r74 0PT=1 FTN $.84¢518

N0 329 I=GG,6
NN 310 J=GG,6
ASUP( TyJ) =ATOT (2* No>+I,2*N5+)J)

311 CONTINUE
29y 320 CONTTINUVE
% CREAYE B CONTKOLLED AND B SUPPRESSZID
2
58 DO 340 I=14N5 ]

DO 331 J=1,6
RCON(I,J)=BTOT(I,J)
330 GCONTINMNUE :
341 CONTI MNE !
0N 36" I=FF,FS
NN 350 Jz1,6
ACON(TI,J)=BTOT(I+M,J)
35N CONTI NUE
35"  CONTINUE
113 DO 380 I=1,M
D0 370 J=1,¢
ASUP(T,J)=RTOT (NS +1,J)
379  CONTINUE
380  CONTINUE
NO 4060 I=GG,G6
DO 390 J=1,6
BSUP(I,J)=BYOT(2*N5+1,J)
399  CONTINUE
CONTINUE
IF(NY+GT.4)GC YO 561

-
D
[~

CREATE C CONTROLLED AND C SJPPRESSED

[P Y NP NP NP ]

a4 DO +29 1l=1,N6
0N 413 J=1,N5
. CCON( I, N=CTOT(I, I
Bt 0 CONTINUE
420 CONTINUE
DO %% 0 I=1,N6
NN 833) J=FF,FS
CCON(Iy,J)=0ed
+30 CONTINUE
ht N CONTI NUE
152 00 460 XI=1,N6
N0 450 J=i,M
CSURP(TI,J)=CTOT(IyNS+Y)
LS9 CONTI NUE
4690 CONTINUE
NN 480 I=1,N6
0N &7 C J=GG,y6
CSUP(TI,J)=CTOT (Iy24NS¢J)
470 CONTINUE
Y80 CONTINUE
3 76




NRICSIN

350

355

Jon

365

373

375

38l

38

39v

395

PROGIAM TETRA

N EYESEY)

-
[l
Ul

43"
491

492
“933

531

%96
297

5)2

510
529
522

536
3610
5L1

5517
5610
561

578
339

390
691

74/7% OPT=1

CRREATE WEIGHTING MATRICES

IFINT GT,u)GD TO 541
NN 491 I=1,46

NN 460 J=1y86
Q(I,J)=U.0
IF(IENeJIR(IHJ)I=10U
CONTINUE

CONTINUE

TF(NE «GT«6)GO TO 5u1
Y=L, > LTI
nNo %93 I=1,6

N0 492 J=1,yt
R1(IyJ)=Lsu
IF(I.ENJIRI(IHJI)=1. 0
SONTTI NUE

CONTI NJE

GO0 TO 562

DO 497 I=1,8

DO 48 € J=1,¢t

R1(Ty, N=lell

IF(Ie ENeJIRLI(IHI) =10l
CONTI NUE

CONTINUE

BR=1, —
DN 528 I=1,F5

DO 510 J=i,Fb
O(I,J)=0.C

IF(I. EQ.J)0(1,J)=88
CONTI NUE

CONTINUE

00 540 I=1,F5

00 530 J=1,F5

ACONT (T9J)=FCONCJ 1D
CONTT NUE

CONTINUE

DO 560 I=1,F)

D0 558 J=1,N6

CCONT (I,J)=CCON(J, 1)
CONTI MUE

CONTI NUE

IF (N7 GT.L)GO TO 625
DO 580 I=1,¢t

DO 570 J=1,F5

BCONT (I9J)=BCON(J,1)
CONTI NUE

CONTINUE

PRINT ¥,*6G0"

IF (NY ¢GTo11)GO TO 562
N0 AG1 I=l,6E

00 500 Jsi,¢

RR(Iy J)=L el

CONTINUE

CONTINUE

D9 610 I=1,6 79

FTN L4,84518




447

«0b

b1r

43

435

Gt

wib

PROGIIAM TETYRA /Tl 0PT=1 FTN 448¢3518

510

311
512

517

614

ALE

517
518

619

527
521

522

[+ )}
NN
e w

(¥ ]

.
[P X XY XS]

527
528
552

RR(Yy I)==1¢/R(I,1)
CONTI NJE

00 512 I=1,¢

0N 511 J=1,6
RRR(TI gJ) ==KF (I,J)
CONTINUE

CONTI NUE

IF(NG «6T.6)G0 TO 619
02 514 I=1,¢

DN 512 J=1,6

RRI(T gJ)=go bl
CONTINUE

CONTINUE .
NN 515 I=1,¢ !
RR1(T gI)==14/R(L, 1) |
CONTI NUE '
DO 6518 I=1,¢

Nno 617 J=3,¢

RRR1I(IyJ)I=~Fr1(I, ) -
CONTI NE

CONTINUE

GO TO 52%

07 521 I=1,6

DO 520 J=1,8

RRICT )=yl

CONTI NUE

CONTT NUE

DO B22 I=1,8

RR1(T yT)==1e/RI(1,1)

CONTINUE

DO b2k I=1,8 3
DD 323 Js1,8 :
RRR1(1yJ)==RR1(I,J)
CONTINUE

CONTI NUE

SOL/E RESPECTIVE RICHTITI :zQJATIONS !

L1=F5 (;
MO=N6 N
NO=Nb :
IA=16 r
1';33 o
It=16 '
CALL VMULFF(CCONTyRRR1,L1,MOyNC,IA,I3,RU,4iCylER)
NO=F5

CALL VMULFF{RUoCCONyL1yMOyNIyIA,IBySS,IL,TER)
IF(N7 GT.L)GO TO 637

N 828 I=1,F5

00 327 J=1,F%

ACNL(I,J)=ACON(I,J)

ACN2 (X, JY=ACONT (I, J)

CONTINUE

CONTINUE

DY 530 I=4,F5 78




o

867

w65

47

475

48y

485

565

PO5AM TFErFRA

931
632

533
634

338
536
037

341
© 650

539
370
352

Tw/?y OPT =4

D0 529 JU=1,6
RCNL1(YXyJ)=BCONC(I,J)
BCN2(Js1)=BCONT (Y, 1)

CONTI NUE

CONTI NUE

00 632 I=1,6

D0 631 J=1,6

BSPL(I,J)=BSUP(I,J)
IF(NZoG‘oﬂ)BSPi(l’J)=BSPM(I,J)

CONTI NE

CONTI ME

IF(NY «6GT,L)GO 70 563

D0 634 1=1,F5

N0 533 J=1,N¢

CCML(T,J)=CCONT(I,J)

CON2(JyI)=CCON(J, T)

CONTINUE

CONTI NUE

DY 536 I=1,N6

DY B35 J=1,6

CSPL(T,J)=CSUP(I,U)

CONTI NUE

CONTINUE

CALL PRIC(FE,ACNZ,SS,Q,P,CX,TOL.IEQ)

Li=N6

MO=N6

NO=F§

IA=38

I3=8

IC=38

CALL VWULFF(RRi,CCNZ,LipHO,VO,IA,IS,RX,I3,IER)
MO=FE

IR=15

cCALL VHULFF(RX,P,LI,HO,NO,Il,IB,O(TRN,IC,IEP)
0% 659 1=1,F5

00 54§ J=1,)N6

OK(Iy J)==0KTRN(J,1I)

CNONTI NUE

CONTINUE

IF(NZ «GTeG)GO TO 671

0N 870 I=41,F5

00 660 J=1,FE

FO(Iy =0

IF(I«EQeJIIFO(Iod) =164

CONTI NUE

CONTINUE

Li=Fb

MO=6

NO=5H

Ia=16

13=p

IC=16

CALL V”ULFF(BCONQRRR;L1,H0,NO,IA,13,RV, Sy 1ER)
NO=F35

CALL VHULFF(RVQBCONT,LI.HO;NO,IA,I3,SO;I:,IER)
caLL HRIC(FS,!CNi,SO,FO,S,ULX,TOL.IEQ'

Li=p

79

FTN 448¢518
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51%

-4

"
(3N
Ry

L1 530

B4
545
55r
;559
Yol
565

570

PIOGRAM TETRA

574

591
392

S92
HhI4

595
6936

T 537
598

720
73N

TW/7k oPT=1 FTN 4.84¢518

MO=5

Ia=6

IR=5

IC=5

NO=F5

CALL VMULFF(RKkyBCN2yL1yMOyNI yIAyI3,RY,IC4IER)
MO=FE&

I8=16

CALL VMULFF(RYySyL1yMOpNU9IA& yI8y32,I5,1I2R)
1.1=Fb

M0=5

NO=F5

IA=16

In=b

IC=16

CALL VMULFF(BCN1yGOyL1yMOyNDsIA,L3,UC,IC,IER)
MO=N6

IR=%

IA=1R

CALL VMULFF(OK,CCN2yL1yM0OyNI»yIA,13,C0391CyI1ER)
00 592 I=1,F5

D0 591 J=1,F5

COT(I ,0)=CC(J,I)

CONTI NUE

CONTI NJE

NO 694 1=FF,FS

D) 593 J=1,N5

CN(I, J)=CCT (I=N5 5 JNS)
CONTINUE

CONTI NVE

NN 656 I=FF,Fb

DO 595 J=FF4F5

CN(Iy J)=CCT(I-N5,yJ=N5)
CONTI NUE

CONTINUE

00 698 I=1,4N5

D0 697 J=1,F5
CN(IysJ)=yeu

CON’ INUE

CONTTINUE

D0 730 I=1,F5

00 7298 J=1,F%

CNIT, JI=CN(I,DN

CC(Iy J)=SACN1I(I,J)=CNI(I,yJ)

UL (Ty J)=ACN1(€1,J) ¢UC(I,J)

COC(T o) =ULX(I,J)=CX (1yJ) ¢ATN2(L, J)
CONTINUE

CONTINUE

L1isF5

MO=Nb

NO=5

IA=16

IR=%

IC=16

CALL VMULFF(OK,CSPL1oL1gMOyNI»TA,I3,03PILLyICHIER)
Li1i=6 80




575

o3l

olt

610

vl

62,

625

PROGRAM TETRA

Cred) L)L)

76467
75N

*H 0
ISt

7ae
79r

e
311

321
330

349
350

85n
87¢

1310
3919

319
It

Ta/Tu 0PT=4

M0=6
NO=F5
In=16
IR=5
IC=16

FTN 4084518

CALL VMULFF(BSPL1,G0,L1,M0,NJ ;IA,13,35PILLy1C,IER)

CREATE TOTAL SYSTEM MATKIX

NN 750 I=1,F5

DO 740 J=1,F5

79(I 4 JI=ULX (I J)
CONTINUE

CONTI NUE

N 7?73 I=1,F5

DN 760 J=F1,F2

79(Iy D=UC(Y,J=F5)
CONTINUE

CONTINUE

DN 791 1I=1,F5

DO 789 J=F3,F4

79(Xy JI)=b ol

CONTINUE

CONTINUE

DO 810 I=F1i,F2

N0 80N J=1,F%

73(I,y J?=0eu

CONTINUE

CONTINUE

DO 830 I=F1,F2

D0 820 J=F1,F2

793(Iy N=CX(I=-FE,J=F5)
CONTI NJUE

CONTI NUE

DO B850 I=F1,F2

D0 8L 0 JsF3,FU

734y N=0SPILL(I=F5y J=F2)
CONTJI NUE

CONTINUE

DO 870 I=F3,F4

DO 860 J=1,F5
79(I,J)=2CSPILL(I=F2,J)
CONTTINUE

CONTINUE

00 890 1IzF3,F&

DN 880 J=F1,F2

79(1y N=CSPILL(I-F2y9J=~F5)
CONTINUJE

CONTINUE .

D0 310 I=F3,Fk

D0 300 JsF3.FbL

731y JYZASUP(1=F2,J=F2)
CONTINUE

CONTI NE

00 312 I=1,2¢

81
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g

o3y

b 3

b4l

647

65

655

66,

66%

67¢

675

680

PJOGIAM TErRA

ER B!
912
398

(Y NS AP RS RS/

313
ILh

339

331

332
3313

YA L) 0PT=1

D0 311 J=31,2¢
73(1, J)=29(1,J)
CONTI NUE

GONTI NUE
1J)08=10

NN=2* F5+6

IA=20

I7=20

EIGEN VALUE ANALYSIS

FTN 4.8¢518

CALL EIGRF(Z99yNNyIA I J0RB,Wya7Cyl74d<,IER)

D0 314 I=1,2.
No 312 J=4,2¢
73(I’J,=ZS(I)J)
CONTI MNE

CONTI NUE

PRINT ¥, =
PRINT *,*0=", BB
PRINT ¥,

PRINT ¥,*THE SYSTEM EI1GENVALUFS"™

PRINT®,*
PRINT".. "
PRINT #,*

PRINT ¥,
NN=NN =4

nn 336 131y, NNy 2
pRINT.'n .
PRINT #,*

J=1+1

PRINT #,*

CONTI NUE

IA=16

I7=8

"y "CZIGENVALUE"

-, “----------'.

“yW (1)

“od(J)

CALL EIGRF(ULXyF5 yIAyIN0ByWA370d5I73WHKyIER)

PRINT ¥,

PRINT #, =

PRINT #,“THE EIGENVALUES*
PRINT #,*0F A+B3*,"
PRRINT #,*

F5=F5 =4

NN 331 I=1,F5,2
PRINT 8,

PRINT #,*

J=T1e¢1

PRINTS,*

CONTI NUE

FS=FS e

DO 331 I=1,F5

NO 932 JY=1,F5
CY(I, N=2CX(I, N
CONTINVE

CONTI NUE

“y"eIGENVALUE"

“opHACI)

Ty WW ()

CALL EIGRF(CXyFS,IAy1J0ByWLy71,17,KWK1,1ER)

DO 335 I=1,F5

82




70U

T8

71¢

715

724

725

730

%

746

PAOGIIAM TETRA

934
335

355

367
58

969
370

156

[ X9

TL/74 0PT=1

DO 934 J=1,F5

CX (L, JI=CY(T,J)

CONTI NUE

CONTTI NUE

pRINT‘,II (1]

PRINT #,* ™

ORINT #,*THE EIGENVALUES®”

FTN 4,8+4¢518

PRINT %y *°0F A=KC*,*™ “y “CIGENVALUF"
plzINT".. ..’l.-_--- ..... (1)
F5=F5 =1

NN 352 I=14F5,2
pRINT;,u .

PRINT %, CyHL(D)

J=T1+1

PRINT *,°** “yH1(J)
CONTINUE

F5=F5 41

CALL FIGRF(COC,FS,1A,1J083,W2,722,L17,WKZyIEZR)
pRINT "n (1]

PRINT #,° *

PRINT #,"THE EIGENVALUES"™

PRINT #*,*0F A+BG=KC™",* “yCEIGENVALUE"
pRINT‘,.l “,l.---.------n

F5=F5 =1
N0 955 I=14F5,2
PRINT ¥,% =

PRINT #,* "y W2(I)
J=I+1

PRINT #,* "y H2(J))
CONTI NUE

F3=FE +1

DO 958 I=1.F%

DO 367 J=1,F5

ACNB (I,J)=ACN1I(I, J)
CONTI NUE

CONTINUE

CALL EIGRF(ACN1,F5,JA,TJOBy3»7Z3,1ZyHK3yIEK)

IND 37N 1=2,F5

NN 969 Jsi,F5

ACN:. (I,J) =ACNB (I, J)

CONTI NE

CONTINUE

pRINT.’u (13

PRINT ,"u (1)

PRINT #,*THE EIGENVALUES"

PRINT #,*“0F A EIGENVA_UE™
PI/INT #,* ceecsccccaest
F5=F5 =1

D0 356 I=14F542

PRINT ¥, *

PRINT #," *SsHW3(I)
Jslel
PRINT #,* “yWI(J)
CONTINUE
FS2F5 o4

83
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PIOGIAM TETRA /774 0PT=1 FTN 4.8+518

e Bt A, e
i

INITI AL CONDITIONS

(Y XS NP

T4s Y{(1)==,Cl 1
Y(2)=,008
Y(3)==4003
Y(4)=,01
S Y(5)==oul1
754 Y (B)=,Jub
Y(7)==4 (3
| Y(3)= .01
{1 Y(9)=,0C1
Y(1)) ==.003
1 75% Y(11) =,L(6
§ Y(12) ==o0 1
; Y(13) ==4G2
] Y (16) =,002
: Y(15) =403
76 Y(15) s=4,002
Y(17) =402
Y(18) ==,(2
1 Y(19) == 03
Y(20) =,004

3 765

INTEGRATE STATE EQUATIONS

CILIICI O

g 77¢ TI=0.0
! TOUT= o2
: IFLAG =1
NEQN= 20
ARSERR=1.0E~¢3
775 RELERR=1,uE=-(3 ;
. Ji=1 X
1107 CALL ODE(XDOTyNEGN,Y,T1,TQUT,KELEIRyABSERRyIFLAG yWORKy IWORK) -
IF(TILT.TOUT)GO TO 1102 '
XX1(J I =Y (1)
780 . XX2(JJI=Y (2)
XX3(JI)=Y(9)
XX&4(JJ)sY(L0)
XX5(J J)=Y (11)
XXS5(JJI=Y(12)
78% XX7(JJ)=Y(13)
XXB8(JJ) =Y (14)
Ji=JJ 41
TOUT=TOUT+.1
IF(TI LEe234)60 TO 1102

e 3 ey o
oo mmeiin Sl o S

79
GENERATE AND PLOT LINE OF SIGHT X AND Y

CLILIWLIVIL

79 N0 1103 I=1,20C1
TM(I) =(I=1)%,1
1197 CONTINUE
00 1104 I=3,204

84




8Go

8us

61

81v

g2:

&2y

8 3¢

835

B

845

PORRAM

TETRA TLs74 oPT=1 FTN 4.8+518

11"

1103

1

358
959

9a
361
362

963
354

355
95¢€

S @5=2.0

X1(I) ==g26?70727*XX1(I)+43998955%XX2(I)

XLCI) =X4(I)=aUBT B IBUL*XXI(I) +4053573L6*XxXY (1)

XLCI) =X1(I) +.02745586¥XX5(I) -,02661601%XXE (1)

X1 (L) =X1(I)=eC29G 367 C*XX7 CI) +eNDU0L353225¢ XXB(I)

X2(1) =ow278569*XX1(I) #e23uS291%XX2(Y)

X2(I) =X2(I)=eG5070442¥XX3(I) +eu357T7BL*XX4(I)

X2 (L) SX2(I) = GLTETH22%XXO (1) +0u4B55553>XXH (1)
X2(I)=X2(I) =eCa730U9344XXT7 (1) #0003 0L01248161*%XXB(T)
CONTT NUE

CALL PLOT(Loyley=3)

CALL SCALE(TM,Be,201,1)

CALL SCALE(X1y8ey201,y1)

CALL BXIS(Uepleg@HTIMEy =k 980 sep, TM(2L2) " MI203))

CALL AXIS(U e9plop4HLOSX 9l 9B8eyTidegX1(202)9X% (2C3)) '
CALL ULINE(TM,X1,201,1,5,2)

CALL SYMBOL(4eyBey0e21y13HLOSX VSe TIMEyGe,13)

CALL PLOT (16 e9Bey=3) j
CALL SCALE(TMybey201,y1) !
CALL SCALE(X2,8e9201,1)

CALL AXIS(UoeyUey@HTIMEy =Ly 80 ydaypTH(202),IH(213))
CALL AXIS(CCegCeytHLOSY s 380y 9ueyX2(202),X2(203))
CALL LINE(TMyX2,20191,5,2)

CALL SYMBOL (lheybeyp8e21y 13HLOSY VSe TIME, eyl 3)
CALL PLOTE(N)

IF(Ms LToN7)GO TO 1131

IF (XK «GT+&) GO TO 1101

N5=,0101

DN 959 I=1,M

DO 358 J=1,12

PHIT1 (I,J)=0.0

CONT1 NUE

CONTI NUE

DO 9581 I=GG,46

NN 960 J=1,12

PHITL (I,J)=PHIT (I ¢F5,J)
CONTINUE

CONTINUE

L1=6

M) =12

NO=>5

IA=16

I9=12

IC=15

CALL VMULFF(PHIT1,D9L1yMOWNI,IAyIByBSP3I,ICHIER)
DO 964 1=1,06

DO 363 Jsi,¢

8SP4 (I,J)=3SP3(I,J)
CONTINUE

CONTINUE

DO 366 I=1,6

00 968 J=1,6

e ey ——— 4_._.‘.
- o . e

C(I,J)’uoe

IF(I. ENeJIC(I5J)=1e)d
CONTINUE

CONTINUE

IAas=iE 85




PROGIAM TETRA ILTaL" 0PT=1 FTN 4,8¢518

MN=5

NO=6 ;

IC=1% !

N8=G i
a6L

CHECK FOR ZERD SINGULAR VALJE

"
C2240 OO 2

86% CALL LSVDF(BSP3yTAyMUSNOCyICyNBySyHK,IER)

Q4=S(6)

IF(L,LT.05)G0 TO 1375

05=06 =4 U1

IF(N6 oLTe=24L)G0 TO 1295
8Tt NL=(4 JD+AB%Y 24) %% 5
N(7,3)=1,/01
N(8y3)=1.7318/01 |
D(3,3)=Q6/01 B
G0 Y0 962 - .
PRINT»,* =
PRINT#,"THE LEAST SINGULAR VALUE [3 ",S(5)
PRINT +,"G6 = *,Q6

-
ot
*~

87%

88l APPLY TRANSFORMATION TECHNIJUE

LICLITINII D

DO 1076 J=1,46
TT(1, J)=BSP3(6, )
88~ 1376  CONTIME
ND 1578 I=1,6
T(Iy1)=TT(1,1)
1178 CONTINUE
00 1587 I=1,N5
89t 00 1679 J=1,1i2
PHIT2(I,J)=Ue0
1977 CONTINUE
18" CONTINUE
. DO 10 82 I=FF,F>
89 00 1081 J=1,12 .
PHIT2 (TyJ)=FHIT(I ¢My.J) |
1982 CONTINJE '
178”2 CONTIMNIE !

L1i=F5 ) L
9J¢ M0O=12 <
NO=6
IA=16
I3=42
IC=16
D) CALL VMULFF(PH1T2,DyL1yMOyN),IA,1I8,BS0N,I2,1ER)
MO=5
.E NO=1
! I=%
CALL VMULFF (BCONyTsL1yMOyNOy IA,I8,43T,IC,IER)
91¢ Li=}
ND=6
IA=y

86




91%

92u

925

935

94y

94k

954

955

96(

PROGIAM TFTRA

1387

138"
1787

L187
1714<

1189
in9r

4774 0PT=1 FTN 4e8+¢518

IC=1

CALL VMULFFU(TT,Ry;L1y,MO,NO,IA,IB,RIL,IC,IER)
NO=1

CALL VMULFF(RT1,TyL1,MO3NO,IA,1ByRMT9yLCH1ER)
RTI(1,1)=4./RT(1,1)

L1i=F5

M0O=1

IA=16

In=4

IC=16

CALL VMULFF(BTyRTI, L1sMOyNOyIAyI3,Vi,1CyitR})
DO 1783 JU=1,F5

RTT(1,J)=8BY(J,y1)

CONTT NUE

Li=F%

MO=1

NQ=F5%

TA=16

IR=1

IC=1%

CALL VYMULFF(V1,BTTyL1,MOsNO,IA,IByVV,yICyIER)
NN 1086 1=1,F5

Ny 10 8% J=1,F6

AN(Iy J)=Uel

IF(I.ENJIQC(TI4J)=1000.D

CONTTY NUE

CONTINUE

CALL MRIC(FS,ACN1,VV,QNyS1,JLX1,TILy IER)
Li=1

MO=1

NO=F5

IA=1

I’=1

I1C=2

CALL VMULFF(RTI;BTTeL1,MO0yND,TIA,13,501,I2,1ER)
MO=F5

Il=16

CALL VMULFF(G01,S1,L1,M0,4NO, JIA,I3,502,1Cy1lER)
Li=b

MO=1 e

NO=F5 ¢

IA=6

IA=1

I1C=5

CALL VMULFF(T9G029L1yMOyNOyIA,IBy3)yICH,IEK)
DO 1u88 1I=1,6

NI 1387 J=1,6

BSPL(I,J)=BSPL(I,J)

CONTI NJUE

CONTINUE

ND 1990 I=1,F5

00 1289 J=1,6

ACN1(I9J)=BCON(I,LJ)

CONTINUE

CONTI NUE

D0 1092 1=1,F%

D0 1061 JU=s1,F5




- AD=A094 766

UNCLASSIFIED

AIR FORCE INST OF TECH WRIGHT=PATTERSON AFB OH SCHOO==ETC F/6 12/2
MODERN OPTIMAL CONTROL METHODS APPLIED IN ACTIVE CONTROL OF A T=eETC{U)
DEC 80 A M JANISZEWSKI

AFIT/6GS/AA/80D=2

o 2
”%%‘:m




PROGRAM TETRA

L1391
Ly9’

129

1197
1101

T4/ 74 0PT=1

ULX(I ,I)=ULX1(T,yJ)
CONTTI NYE

CONTINUE

KK=KK 41

20 1200 I=7,9
D1(3,I)=D(I,3)
CONTI MNUE

N7=1

GO TOo 128
PRINT*,"SINGULARITY PROGRAM FAILED"
STOPRP

END

88

FTN 4484510




SUBRIUTINT MRIC THh/T4 0PT=1 FTN 4.8¢518

i SUBRDUTINE MRIC(N,A;S,yN,Xs7,TOLeIEZR)
DIMENSION A(16),5,S(26) ,0016) 44X (15),7(46) :
COMMUN/MAINLI/NDIM,NDIML,F(15) ;
COMMON/MAINZ2/TR(16)

5 COMMONZINOUT/NOT
ANV=TOL®*1 .E-{'b
NN=N* NOIM
NM1i=N =1
IND=1

it COUNT =0,
IF(IERJVEQ.1)COUNT =99,
IF(IERsEQe1) MR=N
IF(IERWEQ1)GO TO 100
Ti=~1,

1t 309 CONTINUE
IER=Y
COUNT =COUNT +1.

DO 15 XI=1,N
DN 15 J=149 NNy,NDIM
2L 15 X(J)==S(J)
CALL INTEGIN,Ay4X92,T1)
CALL FACTOR1(NyZ,yXyMR)
IER=1
IF(MR LTLU)GO TO 200
25 IER=0
CALL GMINVINy)Ny;XyZyMR,0) L
CALL TFRUTR»ZyNyNyly2) 3
CALL MMUL(Z4TRyNyNyNgX) Ij
DO 18 II=1,NNyNDIM1 -
1=1T "3
no 17 J=II,NN, NNIM
X{(J)=((J)+X (1)) /2.
X{I)=X(J)
17 I=1+4
18 CONTI NUE
101 CONTINUE
DO 16 I=1,yN
16 TR(I) ==1,0
. TOL1=TOL/1t .
MAXIT =b{
D0 43 IT=1,MAXIT
IF(L.ERLEQ.1)G0 TO 10,
CALL MMUL(SyX9gNyNyNyF)
CALL MMUL (XyFgNyNyNyZ)
D0 20 I=1,NNy,NDIM
IT=T+NM1
00 20 J=I,I11
X(JY=A(J) =F (J)

2N 7¢I =70¢d) +QJ)
111 CONTI NUE
IER=0

CALL MLINEQG(NyX9ZyXyTOL1,IER)

IF(IERNELUIGO TO 200

L=0

C1=0.,0 {
II=1 ]
DO 25 I=4i,N I




ot

6%

SUBRIUTINE MRIC

(A ]
i

33

@
5

3
35
69
55
230

N
J
2

R N e

TW/Th O0PT=1

IF(ABS(XCII)=TR(I))elToe (ADV+TOL®X(ITI)) )L =L ¢4
TR(I) =X(II)

II=II +NDIM1

C1=N1 +4TR(I)

IF(ABS(C1) «6GTe1eE*2C)G0 TO 54

IF(Le NEoNIGOD TO 419

CALL GMINVI(NyNyZyFyMR,0)

CALL MMUL(SyXyNyNyNy2)

DO 3C I=1,4NM;NDIM

II=T+NM1

DO 34 J=I,11

Z(N=A(N =2

IF(NR «NEJN) WRITE(NOT 9 35) MR

FORMA T(26HDRICCATYI SOLN IS PSD=-=RANKI3)
GO TO 6%

CONTINUE

WRITE (NOT,45) MAXIT

FTN 4,84+518

FORMAT(2€HLRICCATI NON-CONVERGENT INL2,11H ITERATIONS)

GO TO 69
WRITE (NOT ,,55)1T,T1
FORMAT(29HORICCATI SLOW UP AT ITERATIONI2,12H
IER=1

RETURN

IF(IND.ENR.2)GO TO 2540
IF(COUNT.GE«1C«)RETURN
T1=T1/(2.**COUNT)
IND=2

GO TO 300
T1=T1%(2.*¥*COUNT)
IND=1

END

FUNCTION XNORM Th/ 74 0PT=1

v

19

15
29

FUNCT ION XNORM(N, A)
DIMENSION A(15)
COMMON/MAINL/NDIM,NDIML
NN=N®* NOIM

f1=0.

TR=A(1)

IF(N.ENRLIGO TO 20

I=2

NO 10 TII=NDIMi,NN,NOIM
J=11

D0 5 JI=I,II4NDIM

C1=C1 ¢ABS(A(JI*A(JILN))
J=J+l

TR=TR #A(J)

I=Te4

TR=TR /FLOAT (N)

N2 15 II=1,NNy,NDINMY
C1=C1 4(A(1i)=TR)**2
XNORM sABS (TR) +SQRT(C1)
RETURN
END

90

INITIAL T=F13.5)

FTN 4.84518




SUBRJUT INE MLTNEN MLYAL oPT=41 FTN Lo.B¢518

1 SUBROUTINE MLINEQ(NsAsCyX,TOL,IER) |
NIMENSION A(16),C(16) X (16) w
COMMON/MAINLI/NLIM,NDIML ;
COMMON/MAINZ/F (16)

3 ANV=TOL*L.E-0Ub .

DT=.5 » i 4

DT1=U .

NN=N* NDIM

DO 5 II=1,NNy,NOIM1 !

DT1=DT1-A(I1) D

NT1=0T4/N ;

IF(DT 16T o4t} OT=DT*4,40/0T1L

II=1

DO 2C I=1i,yN

15 DD 12 JJ=I4NNyNDIM

15 X(JJ) =0T A(JJ)
X(IIL)=X(II)=e5
23 IT=II 4NDIML
CALL GMINV(NgNyXyFyHRy()
2y ISR=4
IF (MR oNE«N) RETURN
CALL MMUL(CyFyNyNyNy X)
I=1
DO 4L II=1,NN,NDIM
25 J=1II
TF(I1.ENe1)GO TO 34
DN 25 JJ=I,11,NDIM
C(NnN=Ccyd) k
25 J=J+1 I
33 33 I0=J i
N0 3% JJ=IIy NNyeNDIM
C(I)=CT*DOT(NyF(II)yX(JJ))
35 J=zJ+1
FCID) =F(ID)+1.C
35 41 I=1+1
DO 30 IT=1,20
NEZ=J
CALL MMUL(C3FyNyNyN,yX)
. I=14
4y 1I=1
J=1
GO TO 70
50 J=1"
DO 65 JJ=1,II,NDIM
45 C(HN=C(IN) !
55 J=J+1 -
7e  1I0=J
DT1=2C (D)
N0 75 JJ=II4NNyNDIM
S¢ C(I=C(I)+00T(INy FCIX) X (IN)
75 JzJel
J=J=1
DO 80 JJU=llyJ
81 X(JJ) =F (JJ) i
55 IF(ARS(C(ID) )eGTo1.E+154)6G0 TO 35
IF(ABS(CUID)=DTL) LT« (ADVETIL¥AIS(S(ID))IINE7=NET Y ¥
I=Teg

v

it

91




SUBRJIUTIMF MLTNEN 74774 0PT=1 FTN 4.8¢518

TI=T1 ¢NDIM
IF(I.LE«N)GO TO 60
A IF(NE?.EN.NIGD TO 15¢
CALL MMUL (X 3XyNyNyNyF) !
30 CONTI NUE
35 IER=1 ;
RETUR A |
6 157  CONTINUE
NM1=N =1 '
D0 155 I=1,NN,NOIM |
TI=I+NMY 3
00 155 JJ=I,1I
it 155 X () =C(JD)
IER=C
RETURN
END

SUBRJUTTNE FACTOR1 74/T4  CPT=4 FTN 4084518 |

1 SUBROUTINE FACTOR1(NjyA,S,HR)
DIMENSION A(16),S(16)
COMMON/MAINY/NOIM,NDIML
CNMMON/INOUT/KOUT

C TOL=1,E=06
MR =
NN=N* NDIM ,
TOLL=0, .
D0 1 I=14NNyNDIM3 3

10 k=AR8S (A(I)) P
1 IF(R,GToTOL1)TOL1=R '
TOLL=TOL1%1.E-12
II=1
NO 50 1=1,N
1% IM1=1 =%
DO 5 JJI=T," Ny NDIM
5 S(JJ) =0,
ID=II 4IM3
R=A(ID)=NOT(IM1,S(IX),53(ID)) ]
20 IF(ABS(R) «LTo (TOL*ACYO) ¢TOL1))GO T2 54
IF() 15,501, 28
15 MR==1
WRITE (KOUTy1uul)
10"  FORMAT(3I7HOTRIED TO TACTOM AN INDEFINITE MATKIX)
25 RETYR N
20 S(ID) =SART (R)
MR=MR +1
IF(Ie. ENeN)RETURN
L=IT+NOIM
3 DO 25 JJ=L,NNyNDIM
T9=J)J+IM1
25 S(IJ)2(A(TIJ)=DOT(IML,S(II)yS(UN)I)IISIID
59 IT=IT +NDIM
RETURN
35 END

92




]

19

15

4N

3u

4o

L5

SUBRIUTINE INTEG

31

Tu/Th oPT =4

SUBROUTINE INTEG(NyJA,CyS,yT)
DIMENSION AC16),C(16) ,S(16)
COHHON/HAINIINDIH,NDIHI,X(15)
COMMONMN/MAINZ2/COEF (16)
NN=N* NDIM

NMi=N=4

IND="

ANOIM=XNORM (N, A)

oT=T

IF(ANORM*ABS(DT) o LE.(45) GO o {0
DT=NT /2.

IND=IND+1

GO T0 5

DO 15 I=1,NN,NDIM
J=I+NML

nn 1% JJ=I,J

5(JJ)Y =0T*C(JIN
T1=0T»*2/72.

nn 25 I7=3,15

CALL MMUL (A4CaNyNyNyX)
N3 20 I=1i,4N

IT=(I =1)*NDIM

DO 20 JJ=IyNNyNDIM
I1I=1I1+4

CCJJI) =(X{JJ)+X(XII))*T1
S{JJ) =S(JJI) +CIJ)
T1=0T /FLOAT (IT)
IF(INDeEQeu)GO TO 10U
COEF(11)=4.0

00 30 I=i,1t

TI=11-1
COEF(II)=07'COEF(II#1)/FLUQ[(1)
I1=4

DO &3 I=1yNNyNDIM
J=TeNML

DO 725 Jd=l,v

X(JJ) =A(JI)*COEF (1)
X(II) =X(1I)+COEF(2)
IT=1II +NOIM1

DO 535 L=3,11

CALL MMULC(AsXyNyNyNyC)
II=1

T1=COEF(L)

DO 55 I=1,NNyNDIM
J=Ie+NML

00 5h JJd=l,J
X(JJYsC(JD)

II=II ¢«NDIML

L=0

L=lel

CALL MMUL (X3SsNyNyN, C)
I1=1

D0 9G I=1,N

J=II

IF(I.EQ.l)GU T0 75

DO 76 JJ=I,II4NOIM
StJJ) =S¢J)

93

FTN 4 84518
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SUBRIUTTINE INTZG AYAE 0PT=1 ‘ FTN e 84518
71 J=J+4
75 No 85 JJ=I,N i
6l KK=JJ (b

DO 8fi K=I,NNyNDIM
S =S (J) +C(K) *X (KK)

59 KK=KK+NDIM ;
35 J=J+NDIM .
ob DN 87 JJ=1,NNyNDIM .
LY 4 C(ID =X(JP ;

3) IT=II#+NDIM
IF(Ls EQJINDYGO TO 10C
CALL MHUL(C3CoNyNyNy X)
7. 50 TO 60
1310 CONTINUE
RETURN
END

SUBRIUTINE MM TL/74 oPT=1 FTN LeBR¢518

' 1 SUARDUTINE MMUL(X 9YeN1yN2yN3,y7)
DYMENSION X{(16),Y(16),2(16)
COMMON/MAINLI/NOIM
NENDJI =NDIM®N3 1
i & NEND2=NDIM*NZ2
§ 0N 1 I=1,4N1 !
F N0 1 J=I,NEND3I,NDIM v
! 7(J)=2e0 ’-
K=J-1
16 00 1 K=Iy,NENO2,NDIM
KK=KK +1
: i ZLI =702 ¢X(K)*Y (KK)
RETURN
ENO

FUNCTION DOT T4776 oPT=1 FTN LeB8¢518

1 FUNSTION OOT(NRyA,HE)
DIMENSION A(1B),8 (3¢
Nov=0 .
N0 1 TI=1,NR

r 1 DOT =TOT+A(1)"B(I)
REZTURN
END

94




vt

1

2n

v

40

SUBRIUTI M=

TFF

13

37

+7

50

7

33
30

32
1

T4/ T4 0PT=1

SYRBROUTINE TFR(X3A9NyMy Ky I)
DIMENSION X(16),A (10)
COMON/MAINLI/NDIM
JS=(K=1)*NDIM*M
JEND=M¥NOIM ..

GO TO (1093C95Lg7d490),1
DO 20 II=1,N

No 22 JJ=I1I1,JEND,NDIM
X(JJ) =A(JJ+JS)
RZTURN

DN %7 II=1,N
KK=(TI=-1)*NDIM

0N 43 Jy=1,M
LL=CJJ~1) *NOINM+II
X(KK+JJ)=A(LL+JS)
PETURN

KK=N

DO 64 II=1,JEND,NDINM
LL=II +N-1

N0 59 JJ=II,LL
KK=KK +1

X(KK) =A(JJI+JS)
SETURN

KK=M®* N+1

DO 80 II=i,M
LL=(M=-II)*NDIM+4

DN A0 TJ=1,N

KK=KK =1

JI=LL ¢N=1 4

A(JI+ JS)=X(KK)
RETURN

SAVE=A(1)

K=N

0O 31 T=31,4N

L=N

D0 32 J=1yN
IK=(K=1)*NUIM+K
X(IK) =0,
IF(LEQeKIX(1IK)=A(L)
L=L~-1

K=K=1

X (1) =SAVE

RETURN

END

95
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{ SUBRIUTINE

5

15
2u
25

3L

by
5
5C

55

SMINY

31

55

71

72
75

39

Th/74 0PT=1

SURROUTINE GMINV(NRyNCyA,Uy1R,MT)
OTMENSION A(L1E),U(16)
COMMON/MAINLI/NDIM,NDIML,S({15)
COMMON/INOUT/ZNOT

TOL=1.FE-12

MR=NC

N?Mi=NR=%

TAL1=1.,E-2¢

JI=1

00 169 J=1,NC
FAC=DOTINRyA(JI) s A(DI))
JM1=) -1

JRM=J J+NRMI

JCM=JJeuMl

g 29 I=JJyJCM

U(I)=0.

U{JoMI=L.3

IF(J)eEQel1)GO TO Y&

KK=1

00 3. K=14JM1
TF(S(K)EQels01)GO TO 30
TEMP=«DOT (NRyA (JJ) A (KK))
CALL VADDU(K,TEMP,U(JJ),yU(KK)®
KK=KK ¢NDIM

D0 53 L=1,2

KK=1

00 3] K=1,JM1
IF(S(K)eEQsL)GO TO HU
TEMP==NOT(NR,A(JJ) A (KK))
CALL VADD(NR,TEMPyA(JJ) 4 A (KK))
CALL VADODU(K,TEMP,U(JJ) U (KK))
KK=KK ¢NDIM

TOL1=TOL*FAC
FAC=DOT(NRyAC(II) A (JI))
IF(FAC.,GT.TOL1)GO TO 7L

N0 55 TI=JJsJRM

A(IV=0,

StJ)=12.

KK=1

00 55 K=1i,JMi
IF(S{K)eEQeDe)IGO TO 65

TEMP= «D0OT (Ky UCKK) yU(JJIN)

CALL VADDINRZTEMPA(JJ) yA(K())
KK=KK ¢NDIM
FAC-DCT(JyU(JJ) 4, UCIJ /)
MR=MR -1

GO TO 75

S(N=41,0

KK =19

00 72 K=1yJM1
IF(S(K)EQ,1)60 TO 72
TEMP==DOT(NRyA(JJ) A (KK))
CALL VADD(K,TEMP,U(JJ),U(KK))
KKaKK ¢NDINM

FAC=1 ¢/SORT (FAC)

NN A0 I=zJJy,JRM

A(I)=A(I)*FAC 96

FTN H4e8¢518
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(1]
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SUBRIUVINE

SUBRJUTINT

SUBRJUTINE

GMTNV TL/TH 0PT =4 FTN 4,84¢518

35
139

ten
1290

13I8
136

VAYD

X0nT

DO 85 I=JJ,JCM

UCT) = UCT) *FAC

JJ=3J *NDIM

IF (MR ¢ENsNRsORMRENSNC)IGO TO 127
TF (MT NEe G) WRITE (NOT 110 ) NRy NCy MR
FORMAT(IZ,1HX9I2,8H M RANK,I2)
NEND= NC*NDIM

Ji=1

DO 135 J=1,NC

DO 125 I=1,NR ,
IT=1-J :
S(I)=10. ‘
DO 12% KK=JJyNEND,NOIM i
S(I)=S(I)+A(11+KK)*U(KK)
It=)

N0 132 I=1,NR

UCTT) =S(I)

IT=TI +NDIM

J1=JJ NDIML

RETURN

END

Th/Th 0PT =1 FTN 4, 8+518

SUBROUTINE VADD(N,Ci,A,B) R
DTMENSION A(16),B(16) 9
DO 1 TI=1,N
ACI)=A(I)+C1*B(I)
RETURN

END

Tl 0PT=1 FTN 4.8¢518

SUBROUTINE XO0OT(TI,Y,YP)

DTMENSION Y(2¢8),YP(20)

COMMON 29(26,2()

L1=2)

MO=20

NO=1 X
IA=L0 i
I178=20

1C=22

CALL VMULFF(Z9,Y,L1,M0,NO,I8 yI8,Y>,T3,IER)

RETURN

END
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